Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Light scattering technology may hold promise for quickly determining chemotherapy's effectiveness

23.04.2009
By examining the patterns in which light bounces off cell surfaces, researchers may be able to assess chemotherapy's success in inducing cancer cell death, according to a study led by investigators in the Duke Comprehensive Cancer Center and Duke's Pratt School of Engineering.

The technique might be used as a tool for measuring patients' response to chemotherapy more quickly and non-invasively.

"The goal of this study was to assess if light-scattering techniques could identify nuclear and cellular structure changes following treatment of breast cancer cells with chemotherapeutic agents," said Julie Hanson Ostrander, Ph.D., a researcher in the Duke Comprehensive Cancer Center and co-lead investigator on this study. "We thought we might see changes due to the cell death process induced by chemotherapy, called apoptosis."

The researchers presented their findings at the 100th annual American Association of Cancer Research meeting on Tuesday, April 21, 2009, in Denver. The study was funded by the United States Department of Defense, the National Institutes of Health and the National Science Foundation.

The researchers treated breast cancer cells, in a dish, with one of two standard chemotherapeutic agents, paclitaxel and doxorubicin. They then applied light to the cells at various time intervals and observed the way the light deviated depending on the size and shape of the cells through which it passed. The technique is called angle-resolved low coherence interferometry, and it was developed in the lab of Adam Wax in the biomedical engineering department at Duke's Pratt School.

"We observed that in cells experiencing apoptosis, there were marked changes – both early in the process and then up to a day later – in cellular structure that could be captured by light-scattering," Ostrander said. "In contrast, in cells treated with a dose of drug that does not induce apoptosis, we saw some early changes but no later changes."

If successful in laboratory studies, this technique could be applied as a non-invasive way to quickly determine whether chemotherapy is working or not, Ostrander said.

"Typically, patients undergo chemotherapy and then return several weeks later for a scan to measure changes in their tumor size," she said. "Down the road, we're hopeful that there may be faster ways to tell if a patient is being successfully treated, or if he or she might benefit from an adjustment to their therapy strategy."

Other researchers involved in this study include Kevin Chalut, Michael Giacomelli and Adam Wax.

Lauren Shaftel Williams | EurekAlert!
Further information:
http://www.duke.edu

More articles from Health and Medicine:

nachricht Finnish research group discovers a new immune system regulator
23.02.2018 | University of Turku

nachricht Minimising risks of transplants
22.02.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

A Keen Sense for Molecules

23.02.2018 | Physics and Astronomy

“Laser Technology Live” at the AKL’18 International Laser Technology Congress in Aachen

23.02.2018 | Trade Fair News

Newly designed molecule binds nitrogen

23.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>