Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Light activated treatments could solve MRSA problems after surgery

10.09.2008
Killer dyes that can wipe out bacteria could help solve the superbug problems faced by surgical patients, scientists heard today (Wednesday 10 September 2008) at the Society for General Microbiology's Autumn meeting being held this week at Trinity College, Dublin.

"We showed that 99% of the potentially dangerous Staphylococcus aureus bacteria in infected wounds can be killed using a green dye that gives off toxic molecules when it is activated by near-infrared light," said Dr Ghada Omar from University College London, UK.

Near-infrared light is commonly used in fibre-optics and telecommunications because it passes through glass easily. Researchers have now discovered that it can be used alongside a dye to kill bacteria that infect wounds and burns. The dye used, called indocyanine green, is harmless to humans and inactive in the dark. However, it gives off toxic molecules that rapidly kill the bacteria when it is triggered by the right light wavelengths.

"The chemicals produced when the dye is activated harm the bacteria in such a wide variety of ways that it is unlikely bacteria could ever develop resistance to the treatment," said Dr Omar. This makes it ideal - and possibly the only option - for treating infections with multiple drug resistant bacteria, including MRSA."

Infected wounds are a major problem for thousands of hospital patients every year, and up to 9% of hospital acquired infections occur during surgery, contributing to 77% of deaths from surgical operations. These infections increase the length of time patients must remain in hospital by an average of 10 days, increasing the cost to the NHS by up to two and a half times to as much as £2,400 per patient.

The new light-activated antimicrobial treatment is less effective when there are low oxygen levels in the infected tissues. This is a common problem in injuries where blood systems have been damaged, or where the injury is further away from the bodies' main vascular systems. The latest work from the University College London team shows that even with very low oxygen levels in the damaged tissues, most dangerous bacteria can still be killed using the light-activated dyes.

"Increasing oxygen levels in the infected tissues would maximise the killing effect", said Dr Omar. "But even with low oxygen levels a very wide range of bacteria were killed, including over 70% of Streptococcus pyogenes and Staphylococcus aureus, which has become one of the most drug resistant bacteria in hospitals." Dr Omar's co-authors on the study include Michael Wilson and Sean Nair of the Division of Microbial Diseases, UCL Eastman Dental Institute.

The research is part of a programme looking for a simple, rapid and cheap alternative treatment for infected wounds and ulcers that do not respond to conventional antibiotics.

Lucy Goodchild | alfa
Further information:
http://www.sgm.ac.uk

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>