Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Life and death in the living brain

12.08.2009
Recruitment of new neurons slows when old brain cells kept from dying
Like clockwork, brain regions in many songbird species expand and shrink seasonally in response to hormones.

Now, for the first time, University of Washington neurobiologists have interrupted this natural "annual remodeling" of the brain and have shown that there is a direct link between the death of old neurons and their replacement by newly born ones in a living vertebrate.

The scientists introduced a chemical into one side of sparrow brains in an area that helps control singing behavior to halt apoptosis, a cell suicide program. Twenty days after introduction of the hormones the researchers found that there were 48 percent fewer new neurons than there were in the side of the brain that did not receive the cell suicide inhibitor.

"This is the first demonstration that if you decrease apoptosis you also decrease the number of new brain cells in a live animal. The next step is to understand this process at the molecular level," said Eliot Brenowitz, a UW professor of psychology and biology and co-author of a new study. His co-author is Christopher Thompson, who earned his doctorate at the UW and is now at the Free University of Berlin.

"The seasonal hormonal drop in birds may mimic what is an age-related drop in human hormone levels. Here we have a bird model that is natural and maybe similar genes have a similar function in humans with degenerative diseases such as Alzheimer's and Parkinson's, as well as strokes, which are associated with neuron death."

The research involved Gambel's white-crowned sparrows, a songbird subspecies that winters in California and migrates to Alaska in the spring and summer to breed and raise its young. The sparrow's brain regions, including one called the HVC, which control learned song behavior in males, expand and shrink seasonally. Thompson and Brenowitz previously found that neurons in the HVC begin dying within four days hours after the steroid hormone testosterone is withdrawn from the bird's brains. Thousands of neurons died over this time.

In the new work, the UW researchers received federal and state permission to capture 10 of the sparrows in Eastern Washington at the end of the breeding season. After housing the birds for three months, they castrated the sparrows and then artificially brought them to breeding condition by implanting testosterone and housing them under the same long-day lighting conditions that they would naturally be exposed to in Alaska. This induced full growth of the song control system in the birds' brains.

Next the researchers transitioned the birds to a non-breeding condition by reducing the amount of light they were exposed to and removing the implanted testosterone. They infused the HVC on one side of the brain with chemicals, called caspase inhibitors, that block apoptosis, and two chemical markers that highlight mature and new neurons. Twenty days later the birds were euthanized and sections of their brains were examined under a microscope.

These procedures were done with the approval of the UW's Institutional Animal Care and Use Committee and the National Institute of Mental Health. The latter funded the research.

The HVC straddles both hemispheres of the brain but the two sides are not directly connected. When Thompson counted the number of newly born neurons that had migrated to the HVC, he found only several hundred of them among the hundreds of thousands of mature neurons he examined. And there were nearly half the number of new neurons in the side of the HVC where brain cell death was inhibited compared with the other, untreated side of the HVC. "This shows there is some direct link between the death of old neurons and the addition of new cells that were born elsewhere in the brain and have migrated," said Brenowitz. "What allows new cells to be incorporated into the brain is the big question. This is particularly true on a molecular level where we want to know what is the connection between cell death and neurogenesis and which genes are responsible."

The paper was published in a recent issue of the Journal of Neuroscience.

For more information, contact Brenowitz at 206-543-8534 or eliotb@u.washington.edu

Joel Schwarz | EurekAlert!
Further information:
http://www.washington.edu

More articles from Health and Medicine:

nachricht Light beam replaces blood test during heart surgery
28.02.2017 | University of Central Florida

nachricht Cells adapt ultra-rapidly to zero gravity
28.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New technology offers fast peptide synthesis

28.02.2017 | Life Sciences

WSU research advances energy savings for oil, gas industries

28.02.2017 | Power and Electrical Engineering

Who can find the fish that makes the best sound?

28.02.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>