Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Leukemia patients remain in remission more than 2 years after engineered T cell therapy

10.12.2012
University of Pennsylvania researchers report on results of trial in 12 patients, including two children

Nine of twelve leukemia patients who received infusions of their own T cells after the cells had been genetically engineered to attack the patients' tumors responded to the therapy, which was pioneered by scientists in the Perelman School of Medicine at the University of Pennsylvania. Penn Medicine researchers will present the latest results of the trial today at the American Society of Hematology's Annual Meeting and Exposition.

The clinical trial participants, all of whom had advanced cancers, included 10 adult patients with chronic lymphocytic leukemia treated at the Hospital of the University of Pennsylvania (HUP) and two children with acute lymphoblastic leukemia treated at the Children's Hospital of Philadelphia. Two of the first three patients treated with the protocol at HUP – whose cases were detailed in the New England Journal of Medicine and Science Translational Medicine in August 2011 – remain healthy and in full remissions more than two years after their treatment, with the engineered cells still circulating in their bodies. The findings reveal the first successful and sustained demonstration of the use of gene transfer therapy to turn the body's own immune cells into weapons aimed at cancerous tumors.

"Our results show that chimeric antigen receptor modified T cells have great promise to improve the treatment of leukemia and lymphoma," says the trial's leader, Carl June, MD, the Richard W. Vague Professor in Immunotherapy in the department of Pathology and Laboratory Medicine and director of Translational Research in Penn's Abramson Cancer Center. "It is possible that in the future, this approach may reduce or replace the need for bone marrow transplantation."

The results pave the way for a potential paradigm shift in the treatment of these types of blood cancers, which in advanced stages have the possibility of a cure only with bone marrow transplants. That procedure requires a lengthy hospitalization and carries at least a 20 percent mortality risk -- and even then offers only a limited chance of cure for patients whose disease has not responded to other treatments.

Three abstracts about the new research will be presented during the ASH meeting. David Porter, MD, director of Blood and Marrow Transplantation in the Abramson Cancer Center, will give an oral presentation of Abstract #717 on Monday, Dec. 10, at 5 PM in the Thomas Murphy Ballroom 4, Level 5, Building B of the Georgia World Congress Center. Michael Kalos, PhD, director of the Translational and Correlative Studies Laboratory at Penn, will give an oral presentation on Abstract #756 on Monday, Dec. 10, at 5:45 PM in C208-C210, Level 2, Building C. Stephan Grupp, MD, PhD, director of Translational Research in the Center for Childhood Cancer Research at the Children's Hospital of Philadelphia, will present a poster of Abstract #2604 on Sunday, Dec. 9, at 6 PM in Hall B1-B2, Level 1, Building B.

The protocol for the new treatment involves removing patients' cells through an apheresis process similar to blood donation, and modifying them in Penn's cell and vaccine production facility. Scientists there reprogram the patients' T cells to target tumor cells through a gene modification technique using a HIV-derived lentivirus vector. The vector encodes an antibody-like protein, called a chimeric antigen receptor (CAR), which is expressed on the surface of the T cells and designed to bind to a protein called CD19.

The modified cells are then infused back into the patient's body following lymphodepleting chemotherapy. Once the T cells start expressing the CAR, they focus all of their killing activity on cells that express CD19, which includes CLL and ALL tumor cells, and normal B cells. All of the other cells in the patient that do not express CD19 are ignored by the modified T cells, which limits systemic side effects typically experienced during traditional therapies.

In addition to initiating the death of the cancer cells, a signaling molecule built into the CAR also spurs the cell to produce cytokines that trigger other T cells to multiply -- building a bigger and bigger army until all the target cells in the tumor are destroyed.

In the patients who experienced complete remissions after treatment, the CAR T cells exhibited vigorous proliferation after infusion, with the most robust expansion activity usually occurring between 10 and 31 days after infusion. Each of these patients developed a cytokine release syndrome -- marked by fever, nausea, hypoxia and low blood pressure -- which doctors treated when needed with the anti-cytokine agent tocilizumab.

Ultimately, the modified T cell treatment eradicated large amounts of tumor in these patients.

Tests of patients with complete responses also show that normal B cells have been eliminated along with their tumors. Since these cells are important for the body's immune system to fight infection, the patients now are receiving regular gamma globulin treatments as a preventive measure. No unusual infections have been observed.

In August 2012, the University of Pennsylvania and Novartis announced an exclusive global research and licensing agreement to further study and commercialize these novel cellular immunotherapies using chimeric antigen receptor (CAR) technologies. As part of the transaction, Novartis acquired exclusive rights from Penn to CART-19, the therapy that was the subject of this clinical trial and which is now known as CTL019. Together, Penn and Novartis will build a first-of-its-kind Center for Advanced Cellular Therapies (CACT) in Philadelphia, which will be devoted to the discovery, development and manufacturing of adoptive T cell immunotherapies through a joint research and development program led by scientists and clinicians from Penn and Novartis.

The research was supported by the Leukemia & Lymphoma Society (June is the leader of one of the LLS's $6.25 million Specialized Center of Research grants), the Alliance for Cancer Gene Therapy, and the National Institutes of Health (1R01CA165206 and R01 CA138738).

Patients seeking information about this trial may visit: http://www.penncancer.org/Tcelltherapy/.

Editor's notes: The University of Pennsylvania has licensed this technology to Novartis. Some of the scientists involved in these trials are inventors of this technology.

For interviews with Dr. Stephan Grupp from the Children's Hospital of Philadelphia, please contact Rachel Salis-Silverman at 267-970-3685, or SALIS@email.chop.edu.

Penn Medicine is one of the world's leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $4.3 billion enterprise.

The Perelman School of Medicine is currently ranked #2 in U.S. News & World Report's survey of research-oriented medical schools. The School is consistently among the nation's top recipients of funding from the National Institutes of Health, with $479.3 million awarded in the 2011 fiscal year.

The University of Pennsylvania Health System's patient care facilities include: The Hospital of the University of Pennsylvania -- recognized as one of the nation's top "Honor Roll" hospitals by U.S. News & World Report; Penn Presbyterian Medical Center; and Pennsylvania Hospital — the nation's first hospital, founded in 1751. Penn Medicine also includes additional patient care facilities and services throughout the Philadelphia region.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2011, Penn Medicine provided $854 million to benefit our community.

Holly Auer | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>