Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Leukemia drug reverses tamoxifen-resistance in breast cancer cells

02.08.2011
Researchers at the Kimmel Cancer Center at Jefferson demonstrate drug combination's 'antioxidant effect' on cancer cells and fibroblasts

Taking a leukemia chemotherapy drug may help breast cancer patients who don't respond to tamoxifen overcome resistance to the widely-used drug, new research from the Kimmel Cancer Center at Jefferson suggests.

Interestingly, researchers found that tamoxifen combined with dasatinib, a protein-tyrosine kinase inhibitor, reverses the chemo-resistance caused by cancer-associated fibroblasts in the surrounding tissue by normalizing glucose intake and reducing mitochondrial oxidative stress, the process that fuels the cancer cells.

Previous animal studies have confirmed that combining tyrosine kinase inhibitors with anti-estrogen therapies, like tamoxifen, can prevent drug resistance, but none have suggested that the target of the inhibitors is the cancer-associated fibroblasts.

The researchers report their findings in the August 1 issue of Cell Cycle.

About 70 percent of women diagnosed with breast cancer will have estrogen receptor positive (ER(+)) disease, which indicates that the tumor may respond to tamoxifen. However, a large percentage of these tumors—up to 35 percent—have little to no response to the drug or eventually develop resistance to it.

In this study, researchers sought to better understand drug resistance by looking at the metabolic basis in an ER (+) cell line and cancer-associated fibroblasts. The researchers have previously established a relationship between the two, where cancer cells induce aerobic glycolysis by secreting hydrogen peroxide in adjacent fibroblasts via oxidative stress. In turn, these fibroblasts provide nutrients to the cancer cells to proliferate, a process that ultimately makes tumors grow.

Here, they investigated and then demonstrated that this interaction was also the basis of tamoxifen resistance.

In a sense, the drug combination had an "antioxidant effect" in these types of cancer cells, according to Michael P. Lisanti, M.D., Ph.D., Professor and Chair of Stem Cell Biology and Regenerative Medicine at Jefferson Medical College of Thomas Jefferson University and a member of the Kimmel Cancer Center.

"The fibroblasts are what make ER (+) cancer cells resistant to the tamoxifen," said Dr. Lisanti. "But the tamoxifen plus dasatinib maintained both fibroblasts and cancer cells in a 'glycolytic state,' with minimal oxidative stress and more cell death, most likely because of an absence of metabolic coupling. The supply between the two was cut."

"This suggests resistance to chemotherapeutic agents is a metabolic and stromal phenomenal," he added.

Researchers showed that ER (+) cancer cells alone responded to tamoxifen but when co-cultured with human fibroblasts had little to no effect. Similarly, dasatinib, a chemotherapy drug used to treat leukemia patients who can no longer benefit from other medications, had no effect on fibroblasts alone or cancer cells. Together, however, the drugs prevented the cancer cells co-cultured with the fibroblasts from using high-energy nutrients from the fibroblasts.

This combination resulted in nearly 80 percent cell death, the team reported—a two to three fold increase when compared with tamoxifen alone.

"The drugs have no effect when they are used alone—it's in unison when they effectively kill the cancer cells in the presence of fibroblasts," said Dr. Lisanti. "This opens up the door for possible new treatment strategies. This 'synthetic lethality' may help patients overcome resistance in the clinic."

Steve Graff | EurekAlert!
Further information:
http://www.jefferson.edu

More articles from Health and Medicine:

nachricht Correct connections are crucial
26.06.2017 | Charité - Universitätsmedizin Berlin

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>