Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Leukemia drug reverses tamoxifen-resistance in breast cancer cells

02.08.2011
Researchers at the Kimmel Cancer Center at Jefferson demonstrate drug combination's 'antioxidant effect' on cancer cells and fibroblasts

Taking a leukemia chemotherapy drug may help breast cancer patients who don't respond to tamoxifen overcome resistance to the widely-used drug, new research from the Kimmel Cancer Center at Jefferson suggests.

Interestingly, researchers found that tamoxifen combined with dasatinib, a protein-tyrosine kinase inhibitor, reverses the chemo-resistance caused by cancer-associated fibroblasts in the surrounding tissue by normalizing glucose intake and reducing mitochondrial oxidative stress, the process that fuels the cancer cells.

Previous animal studies have confirmed that combining tyrosine kinase inhibitors with anti-estrogen therapies, like tamoxifen, can prevent drug resistance, but none have suggested that the target of the inhibitors is the cancer-associated fibroblasts.

The researchers report their findings in the August 1 issue of Cell Cycle.

About 70 percent of women diagnosed with breast cancer will have estrogen receptor positive (ER(+)) disease, which indicates that the tumor may respond to tamoxifen. However, a large percentage of these tumors—up to 35 percent—have little to no response to the drug or eventually develop resistance to it.

In this study, researchers sought to better understand drug resistance by looking at the metabolic basis in an ER (+) cell line and cancer-associated fibroblasts. The researchers have previously established a relationship between the two, where cancer cells induce aerobic glycolysis by secreting hydrogen peroxide in adjacent fibroblasts via oxidative stress. In turn, these fibroblasts provide nutrients to the cancer cells to proliferate, a process that ultimately makes tumors grow.

Here, they investigated and then demonstrated that this interaction was also the basis of tamoxifen resistance.

In a sense, the drug combination had an "antioxidant effect" in these types of cancer cells, according to Michael P. Lisanti, M.D., Ph.D., Professor and Chair of Stem Cell Biology and Regenerative Medicine at Jefferson Medical College of Thomas Jefferson University and a member of the Kimmel Cancer Center.

"The fibroblasts are what make ER (+) cancer cells resistant to the tamoxifen," said Dr. Lisanti. "But the tamoxifen plus dasatinib maintained both fibroblasts and cancer cells in a 'glycolytic state,' with minimal oxidative stress and more cell death, most likely because of an absence of metabolic coupling. The supply between the two was cut."

"This suggests resistance to chemotherapeutic agents is a metabolic and stromal phenomenal," he added.

Researchers showed that ER (+) cancer cells alone responded to tamoxifen but when co-cultured with human fibroblasts had little to no effect. Similarly, dasatinib, a chemotherapy drug used to treat leukemia patients who can no longer benefit from other medications, had no effect on fibroblasts alone or cancer cells. Together, however, the drugs prevented the cancer cells co-cultured with the fibroblasts from using high-energy nutrients from the fibroblasts.

This combination resulted in nearly 80 percent cell death, the team reported—a two to three fold increase when compared with tamoxifen alone.

"The drugs have no effect when they are used alone—it's in unison when they effectively kill the cancer cells in the presence of fibroblasts," said Dr. Lisanti. "This opens up the door for possible new treatment strategies. This 'synthetic lethality' may help patients overcome resistance in the clinic."

Steve Graff | EurekAlert!
Further information:
http://www.jefferson.edu

More articles from Health and Medicine:

nachricht Finnish research group discovers a new immune system regulator
23.02.2018 | University of Turku

nachricht Minimising risks of transplants
22.02.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>