Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Leukaemia caused by chromosome catastrophe

24.03.2014

Rare genetic event massively predisposes people to a form of leukemia

Researchers have found that people born with a rare abnormality of their chromosomes have a 2,700-fold increased risk of a rare childhood leukaemia. In this abnormality, two specific chromosomes are fused together but become prone to catastrophic shattering.

Acute lymphoblastic leukaemia, or ALL, is the most common childhood cancer. Scientists previously found that a small subset of ALL patients have repeated sections of chromosome 21 in the genomes of their leukaemia cells. This form of ALL – iAMP21 ALL – requires more intensive treatment than many other types of ALL. The scientists used modern DNA analysis methods to reconstruct the sequence of genetic events that lead to iAMP21 ALL.

The team noticed that some patients with iAMP21 ALL were born with an abnormality in which chromosome 15 and chromosome 21 are fused together. The researchers wanted to discover if this type of fusion (known as a Robertsonian translocation) was connected with this rare form of ALL. They found that the joining of the two chromosomes increases a person's risk of developing the rare iAMP21 form of ALL by 2,700 fold.

"Advances in treatment are improving patients' outcomes, but iAMP21 ALL patients require more intensive chemotherapy than other leukaemia patients," says Professor Christine Harrison, co-lead author from Newcastle University. "Although rare, people who carry this specific joining together of chromosomes 15 and 21 are specifically and massively predisposed to iAMP21 ALL."

"We have been able to map the roads the cells follow in their transition from a normal genome to a leukaemia genome."

The team developed new insights for analysing genome data that can reveal the sequence of complicated genetic changes that cause a healthy cell to become cancerous. They can now take a cancer cell at one point in time and deduce the relative timing and patterns of mutational events that occurred in that cell's life history.

The team sequenced nine samples from iAMP21 ALL patients, four with the rare Robertsonian translocation event and five that occurred in the general population. They found that for the four patients with the Robertsonian translocation, the cancer was initiated by a catastrophic genetic event known as chromothripsis. This event shatters a chromosome - in this case the joined chromosomes 15 and 21 - and then the DNA repair machinery pastes the chromosome back together in a highly flawed and inaccurate order. In the five other patients, the cancer was initiated by two copies of chromosome 21 being fused together, head to head, usually followed by chromothripsis.

"This is a remarkable cancer – for patients with iAMP 21 ALL we see the same part of the genome struck by massive chromosomal rearrangement," says Yilong Li, a first author from the Wellcome Trust Sanger Institute. "The method we've developed can now be used to investigate genetic changes in all cancer types."

The team found a consistent sequence of genetic events across the patients studied. Although the events at first sight seem random and chaotic, the end result is a new chromosome 21 in which the numbers and arrangement of genes are optimised to drive leukaemia.

The team will now use this method to decipher the genetic events that underlie many different cancer types.

"What is striking about our findings is that this type of leukaemia could develop incredibly quickly – potentially in just a few rounds of cell division," says Dr Peter Campbell, co-lead author from the Wellcome Trust Sanger Institute. "We now want to understand why the abnormally fused chromosomes are so susceptible to this catastrophic shattering."

###

Notes to Editors

Publication Details

Li Y, Schwab C, Ryan S, et al (2014) 'Constitutional and somatic genomic rearrangements coherently restructure chromosome 21 in acute lymphoblastic leukaemia'. Nature

Advanced online publication in Nature on 23 March, 2014.

DOI: 10.1038/nature13115

Funding

This work was supported by the Wellcome Trust, Leukaemia and Lymphoma Research Specialist Programme, Research Foundation – Flanders (FWO) and the European Research Council.

Participating Centres

A full list of participating centres appears on the Nature website.

Selected Websites

Newcastle University is a Russell Group University. We rank in the top 20 UK universities in The Sunday Times 2013 University Guide. Amongst our peers Newcastle is: fifth in the UK for graduates into jobs (HESA 2011-12), 10th in the UK for student satisfaction and eighth in the UK for Medical research power and in the UK's top 12 for research power in Science and Engineering. 95 per cent of our students are in a job or further training within six months of graduating. We have a world-class reputation for research excellence and are spearheading three major societal challenges that have a significant impact on global society. These themes are: Ageing and Health, Sustainability, and Social Renewal. Newcastle University is the first UK university to establish a fully owned international branch campus for medicine at its NUMed Campus in Malaysia, which opened in 2011. Our International students put Newcastle University in world's top 12 (ISB 2011).

http://www.ncl.ac.uk/

Leukaemia & Lymphoma Research is a leading UK charity dedicated to improving the lives of patients with all types of blood cancer, including leukaemia, lymphoma and myeloma. Its life-saving work is focused on finding causes, improving diagnosis and treatments, and running groundbreaking clinical trials for all blood cancer patients.

The charity champions patients' needs by influencing relevant policy and decision makers. Its communities give blood cancer patients and their families a place where they can find support and information and share their journey with other people who can relate to what they are going through. Around 30,000 people of all ages, from children to adults, are diagnosed with blood cancer every year in the UK.

http://www.beatingbloodcancers.org.uk

The Wellcome Trust Sanger Institute is one of the world's leading genome centres. Through its ability to conduct research at scale, it is able to engage in bold and long-term exploratory projects that are designed to influence and empower medical science globally. Institute research findings, generated through its own research programmes and through its leading role in international consortia, are being used to develop new diagnostics and treatments for human disease.

http://www.sanger.ac.uk

The Wellcome Trust is a global charitable foundation dedicated to achieving extraordinary improvements in human and animal health. We support the brightest minds in biomedical research and the medical humanities. Our breadth of support includes public engagement, education and the application of research to improve health. We are independent of both political and commercial interests.

http://www.wellcome.ac.uk

Contact details

Don Powell Media Manager
Wellcome Trust Sanger Institute
Hinxton, Cambridge, CB10 1SA, UK
Tel +44 (0)1223 496 928
Mobile +44 (0)7753 7753 97
Email press.office@sanger.ac.uk

Mary Clarke | EurekAlert!

Further reports about: ALL blood catastrophe chromosomes leukaemia sequence translocation

More articles from Health and Medicine:

nachricht 'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers
16.02.2018 | National University of Science and Technology MISIS

nachricht New process allows tailor-made malaria research
16.02.2018 | Eberhard Karls Universität Tübingen

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>