Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Leukaemia caused by chromosome catastrophe

24.03.2014

Rare genetic event massively predisposes people to a form of leukemia

Researchers have found that people born with a rare abnormality of their chromosomes have a 2,700-fold increased risk of a rare childhood leukaemia. In this abnormality, two specific chromosomes are fused together but become prone to catastrophic shattering.

Acute lymphoblastic leukaemia, or ALL, is the most common childhood cancer. Scientists previously found that a small subset of ALL patients have repeated sections of chromosome 21 in the genomes of their leukaemia cells. This form of ALL – iAMP21 ALL – requires more intensive treatment than many other types of ALL. The scientists used modern DNA analysis methods to reconstruct the sequence of genetic events that lead to iAMP21 ALL.

The team noticed that some patients with iAMP21 ALL were born with an abnormality in which chromosome 15 and chromosome 21 are fused together. The researchers wanted to discover if this type of fusion (known as a Robertsonian translocation) was connected with this rare form of ALL. They found that the joining of the two chromosomes increases a person's risk of developing the rare iAMP21 form of ALL by 2,700 fold.

"Advances in treatment are improving patients' outcomes, but iAMP21 ALL patients require more intensive chemotherapy than other leukaemia patients," says Professor Christine Harrison, co-lead author from Newcastle University. "Although rare, people who carry this specific joining together of chromosomes 15 and 21 are specifically and massively predisposed to iAMP21 ALL."

"We have been able to map the roads the cells follow in their transition from a normal genome to a leukaemia genome."

The team developed new insights for analysing genome data that can reveal the sequence of complicated genetic changes that cause a healthy cell to become cancerous. They can now take a cancer cell at one point in time and deduce the relative timing and patterns of mutational events that occurred in that cell's life history.

The team sequenced nine samples from iAMP21 ALL patients, four with the rare Robertsonian translocation event and five that occurred in the general population. They found that for the four patients with the Robertsonian translocation, the cancer was initiated by a catastrophic genetic event known as chromothripsis. This event shatters a chromosome - in this case the joined chromosomes 15 and 21 - and then the DNA repair machinery pastes the chromosome back together in a highly flawed and inaccurate order. In the five other patients, the cancer was initiated by two copies of chromosome 21 being fused together, head to head, usually followed by chromothripsis.

"This is a remarkable cancer – for patients with iAMP 21 ALL we see the same part of the genome struck by massive chromosomal rearrangement," says Yilong Li, a first author from the Wellcome Trust Sanger Institute. "The method we've developed can now be used to investigate genetic changes in all cancer types."

The team found a consistent sequence of genetic events across the patients studied. Although the events at first sight seem random and chaotic, the end result is a new chromosome 21 in which the numbers and arrangement of genes are optimised to drive leukaemia.

The team will now use this method to decipher the genetic events that underlie many different cancer types.

"What is striking about our findings is that this type of leukaemia could develop incredibly quickly – potentially in just a few rounds of cell division," says Dr Peter Campbell, co-lead author from the Wellcome Trust Sanger Institute. "We now want to understand why the abnormally fused chromosomes are so susceptible to this catastrophic shattering."

###

Notes to Editors

Publication Details

Li Y, Schwab C, Ryan S, et al (2014) 'Constitutional and somatic genomic rearrangements coherently restructure chromosome 21 in acute lymphoblastic leukaemia'. Nature

Advanced online publication in Nature on 23 March, 2014.

DOI: 10.1038/nature13115

Funding

This work was supported by the Wellcome Trust, Leukaemia and Lymphoma Research Specialist Programme, Research Foundation – Flanders (FWO) and the European Research Council.

Participating Centres

A full list of participating centres appears on the Nature website.

Selected Websites

Newcastle University is a Russell Group University. We rank in the top 20 UK universities in The Sunday Times 2013 University Guide. Amongst our peers Newcastle is: fifth in the UK for graduates into jobs (HESA 2011-12), 10th in the UK for student satisfaction and eighth in the UK for Medical research power and in the UK's top 12 for research power in Science and Engineering. 95 per cent of our students are in a job or further training within six months of graduating. We have a world-class reputation for research excellence and are spearheading three major societal challenges that have a significant impact on global society. These themes are: Ageing and Health, Sustainability, and Social Renewal. Newcastle University is the first UK university to establish a fully owned international branch campus for medicine at its NUMed Campus in Malaysia, which opened in 2011. Our International students put Newcastle University in world's top 12 (ISB 2011).

http://www.ncl.ac.uk/

Leukaemia & Lymphoma Research is a leading UK charity dedicated to improving the lives of patients with all types of blood cancer, including leukaemia, lymphoma and myeloma. Its life-saving work is focused on finding causes, improving diagnosis and treatments, and running groundbreaking clinical trials for all blood cancer patients.

The charity champions patients' needs by influencing relevant policy and decision makers. Its communities give blood cancer patients and their families a place where they can find support and information and share their journey with other people who can relate to what they are going through. Around 30,000 people of all ages, from children to adults, are diagnosed with blood cancer every year in the UK.

http://www.beatingbloodcancers.org.uk

The Wellcome Trust Sanger Institute is one of the world's leading genome centres. Through its ability to conduct research at scale, it is able to engage in bold and long-term exploratory projects that are designed to influence and empower medical science globally. Institute research findings, generated through its own research programmes and through its leading role in international consortia, are being used to develop new diagnostics and treatments for human disease.

http://www.sanger.ac.uk

The Wellcome Trust is a global charitable foundation dedicated to achieving extraordinary improvements in human and animal health. We support the brightest minds in biomedical research and the medical humanities. Our breadth of support includes public engagement, education and the application of research to improve health. We are independent of both political and commercial interests.

http://www.wellcome.ac.uk

Contact details

Don Powell Media Manager
Wellcome Trust Sanger Institute
Hinxton, Cambridge, CB10 1SA, UK
Tel +44 (0)1223 496 928
Mobile +44 (0)7753 7753 97
Email press.office@sanger.ac.uk

Mary Clarke | EurekAlert!

Further reports about: ALL blood catastrophe chromosomes leukaemia sequence translocation

More articles from Health and Medicine:

nachricht Portable finger-probe device can successfully measure liver function in potential organ donors
29.05.2015 | University of California - Los Angeles Health Sciences

nachricht Project start: New active substance targeting dreaded hospital pathogens
29.05.2015 | Deutsches Zentrum für Infektionsforschung

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lasers are the key to mastering challenges in lightweight construction

Many joining and cutting processes are possible only with lasers. New technologies make it possible to manufacture metal components with hollow structures that are significantly lighter and yet just as stable as solid components. In addition, lasers can be used to combine various lightweight construction materials and steels with each other. The Fraunhofer Institute for Laser Technology ILT in Aachen is presenting a range of such solutions at the LASER World of Photonics trade fair from June 22 to 25, 2015 in Munich, Germany, (Hall A3, Stand 121).

Lightweight construction materials are popular: aluminum is used in the bodywork of cars, for example, and aircraft fuselages already consist in large part of...

Im Focus: Solid-state photonics goes extreme ultraviolet

Using ultrashort laser pulses, scientists in Max Planck Institute of Quantum Optics have demonstrated the emission of extreme ultraviolet radiation from thin dielectric films and have investigated the underlying mechanisms.

In 1961, only shortly after the invention of the first laser, scientists exposed silicon dioxide crystals (also known as quartz) to an intense ruby laser to...

Im Focus: Advance in regenerative medicine

The only professorship in Germany to date, one master's programme, one laboratory with worldwide unique equipment and the corresponding research results: The University of Würzburg is leading in the field of biofabrication.

Paul Dalton is presently the only professor of biofabrication in Germany. About a year ago, the Australian researcher relocated to the Würzburg department for...

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Quasi-sexual gene transfer drives genetic diversity of hot spring bacteria

29.05.2015 | Life Sciences

First Eastern Pacific tropical depression runs ahead of dawn

29.05.2015 | Earth Sciences

Donuts, math, and superdense teleportation of quantum information

29.05.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>