Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Legionnaires' disease outbreak linked to hospital's decorative fountain

10.01.2012
A 2010 outbreak of Legionnaires' disease in Wisconsin has been linked to a decorative fountain in a hospital lobby, according to a study published in the February issue of Infection Control and Hospital Epidemiology, the journal of the Society for Healthcare Epidemiology of America.

When the outbreak of Legionnaires' disease was detected among eight people in southeast Wisconsin, state and local public health officials worked closely with hospital staff to launch an investigation to determine the source of the outbreak. Legionnaires' disease is a severe and potentially life-threatening form of pneumonia caused by the bacteria Legionella and is spread through inhalation contact with contaminated water sources.

Through detailed interviews with patients, officials identified one hospital as the site of the contamination. Subsequent environmental testing within the hospital detected notable amounts of Legionella in samples collected from the "water wall" decorative fountain located in the hospital's main lobby.

The investigation revealed that all eight patients had spent time in the main lobby where the fountain is located. This, along with the proximity of each patient's onset of illness and the degree of Legionella contamination in the fountain strongly support the conclusion that the decorative fountain was the source of the outbreak. Hospital officials quickly shut down the fountain when it was first suspected as a source, and notified staff and approximately 4,000 potentially exposed patients and visitors. Prior to the investigation, the decorative fountain underwent routine cleaning and maintenance.

All eight patients in the Wisconsin outbreak recovered from the disease, and no cases occurred following the shutdown of the fountain.

The outbreak is notable since none of the patients with Legionnaires' disease was an inpatient at the hospital when exposed. And some patients reported only incidental exposure to the fountain, such as delivering a package or visiting the hospital pharmacy.

At the time of the outbreak there was no published information on the effectiveness of fountain disinfection and maintenance procedures to reduce the risks of Legionella contamination.

"Since our investigation, the Wisconsin Division of Public Health has developed interim guidelines advising healthcare facilities with decorative fountains to establish strict maintenance procedures and conduct periodic bacteriologic monitoring for Legionella," said Thomas E. Haupt, MS, an epidemiologist with the Wisconsin Division of Public Health and the study's lead author. "The guidelines stress that until additional data are available that demonstrate effective maintenance procedures for eliminating the risk of Legionella transmission from indoor decorative water fountains in healthcare settings, water fountains of any type should be considered at risk of becoming contaminated with Legionella bacteria."

Since this investigation, many healthcare facilities in Wisconsin shut down or removed decorative fountains in their facilities, while others enhanced their regular testing protocols to reduce the risk of Legionnaires' disease, the researchers report. Healthcare facility construction guidelines published after this outbreak stipulate that, "fountains and other open decorative water features may represent a reservoir for opportunistic human pathogens; thus they are not recommended for installation within any enclosed spaces in healthcare facilities."

Thomas E. Haupt, Richard T. Heffernan, James J. Kazmierczak, Henry Nehls-Lowe, Bruce Rheineck, Christine Powell, Kathryn K. Leonhardt, Amit S. Chitnis, and Jeffrey P. Davis, "An outbreak of Legionnaires disease associated with a decorative water wall fountain in a hospital." Infection Control and Hospital Epidemiology 33:2 (February 2012).

Published through a partnership between the Society for Healthcare Epidemiology of America and The University of Chicago Press, Infection Control and Hospital Epidemiology provides original, peer-reviewed scientific articles for anyone involved with an infection control or epidemiology program in a hospital or healthcare facility. ICHE is ranked 15 out of 140 journals in its discipline in the latest Journal Citation Reports from Thomson Reuters.

SHEA is a professional society representing more than 2,000 physicians and other healthcare professionals around the world with expertise in healthcare epidemiology and infection prevention and control. SHEA's mission is to prevent and control healthcare-associated infections and advance the field of healthcare epidemiology. The society leads this field by promoting science and research and providing high-quality education and training in epidemiologic methods and prevention strategies. SHEA upholds the value and critical contributions of healthcare epidemiology to improving patient care and healthcare worker safety in all healthcare settings.

Tamara Moore | EurekAlert!
Further information:
http://www.shea-online.org

More articles from Health and Medicine:

nachricht Improving memory with magnets
28.03.2017 | McGill University

nachricht Graphene-based neural probes probe brain activity in high resolution
28.03.2017 | Graphene Flagship

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>