Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Learning after the stroke

17.08.2009
BMBF grants more than EUR 3 million for interdisciplinary research group coordinated by Prof. Dr. Siegrid Löwel at Jena University and at the Bernstein Center for Computational Neuroscience Göttingen

An occluded or burst blood vessel - and the blood supply through the brain is interrupted: stroke. In Germany alone, approximately 200,000 people have a stroke every year.

A fast intensive care saves the lives of many persons affected. But more than two third of the patients suffer from permanent damages. Much of what has been normal before - walking, speaking, and eating - must be learnt again. Often, however, patients cannot recover all their initial abilities.

Why learning is so arduous and often futile after a stroke is to be investigated by scientists from the Jena University and Hospital and a partner in Göttingen in an interdisciplinary research project. In the framework of the funding initiative "Bernstein Focus: Neuronal Basis of Learning", the Federal Ministry of Education and Research (BMBF) plans to fund the collaborative project in an amount of more than EUR 3 million. More than EUR 2.5 million of that go to Jena. The research collaboration is part of the National Network Computational Neuroscience.

"We aim at exploring the reasons for the brain's restricted ability to learn after a stroke", says Prof. Dr. Siegrid Löwel from the University of Jena. The professor of General Zoology and Animal Physiology at Jena University coordinates the research project. Apart from Prof. Löwel and her team, neurologists around Prof. Dr. Otto W. Witte and Prof. Dr. Knut Holthoff at Jena University Hospital as well as Prof. Dr. Christian Hübner from the Jena Institute of Clinical Chemistry and Laboratory Medicine are involved in the research project. On a long-term basis, we wish to develop therapies that help recover the learning ability of the brain." Another partner supporting the consortium is the theoretical physicist Prof. Dr. Fred Wolf from the Max-Planck-Institute for Dynamics and Self-Organization in Göttingen.

The researchers' basic approach depends on the following observation: Due to the shortage of oxygen not only the brain cells immediately next to the stroke are damaged. "From our own studies we know that regions of the brain not immediately affected by the stroke suffer from a loss of plasticity as well", states Löwel. Plasticity in a neurological sense means the ability of brain cells to keep forming new synapses with other neurons if demanded. This is the basis of each learning process.

Which non-local control mechanisms are responsible for the interaction of two distant areas of the brain, the researchers try to find out with the help of experiments on mice. "Using mouse models allows a precise study of how learning, for instance learning to see, works", emphasizes Prof. Löwel. On the one hand, the visual system of mice is a well characterized animal model for the plasticity of the brain. On the other hand, the researchers from Jena will combine two special imaging techniques for the first time in the framework of the project. They are available only at a handful of institutions: 1. The optical imaging of nerve cell activity that allows to visualize activity patterns of the brain at a much higher spatial resolution than e.g. an MRI scanner (Löwel Lab). 2. The 2-photon microscopy in vivo (Profs. Holthoff/Witte) which is able to additionally visualize the activity of single brain cells.

The project will be funded for three years. If evaluated positively the team can expect further funding by the BMBF for two more years.

Contact:
Prof. Dr. Siegrid Löwel
Institute of General Zoology and Animal Physiology at
Friedrich-Schiller-University Jena
Ebertstraße 1
D-07743 Jena
Phone: +49 (0)3641 949131
Email: siegrid.loewel@uni-jena.de

Dr. Ute Schönfelder | idw
Further information:
http://www.uni-jena.de

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

New technique makes brain scans better

22.06.2017 | Medical Engineering

CWRU researchers find a chemical solution to shrink digital data storage

22.06.2017 | Life Sciences

Warming temperatures threaten sea turtles

22.06.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>