Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Learning after the stroke

17.08.2009
BMBF grants more than EUR 3 million for interdisciplinary research group coordinated by Prof. Dr. Siegrid Löwel at Jena University and at the Bernstein Center for Computational Neuroscience Göttingen

An occluded or burst blood vessel - and the blood supply through the brain is interrupted: stroke. In Germany alone, approximately 200,000 people have a stroke every year.

A fast intensive care saves the lives of many persons affected. But more than two third of the patients suffer from permanent damages. Much of what has been normal before - walking, speaking, and eating - must be learnt again. Often, however, patients cannot recover all their initial abilities.

Why learning is so arduous and often futile after a stroke is to be investigated by scientists from the Jena University and Hospital and a partner in Göttingen in an interdisciplinary research project. In the framework of the funding initiative "Bernstein Focus: Neuronal Basis of Learning", the Federal Ministry of Education and Research (BMBF) plans to fund the collaborative project in an amount of more than EUR 3 million. More than EUR 2.5 million of that go to Jena. The research collaboration is part of the National Network Computational Neuroscience.

"We aim at exploring the reasons for the brain's restricted ability to learn after a stroke", says Prof. Dr. Siegrid Löwel from the University of Jena. The professor of General Zoology and Animal Physiology at Jena University coordinates the research project. Apart from Prof. Löwel and her team, neurologists around Prof. Dr. Otto W. Witte and Prof. Dr. Knut Holthoff at Jena University Hospital as well as Prof. Dr. Christian Hübner from the Jena Institute of Clinical Chemistry and Laboratory Medicine are involved in the research project. On a long-term basis, we wish to develop therapies that help recover the learning ability of the brain." Another partner supporting the consortium is the theoretical physicist Prof. Dr. Fred Wolf from the Max-Planck-Institute for Dynamics and Self-Organization in Göttingen.

The researchers' basic approach depends on the following observation: Due to the shortage of oxygen not only the brain cells immediately next to the stroke are damaged. "From our own studies we know that regions of the brain not immediately affected by the stroke suffer from a loss of plasticity as well", states Löwel. Plasticity in a neurological sense means the ability of brain cells to keep forming new synapses with other neurons if demanded. This is the basis of each learning process.

Which non-local control mechanisms are responsible for the interaction of two distant areas of the brain, the researchers try to find out with the help of experiments on mice. "Using mouse models allows a precise study of how learning, for instance learning to see, works", emphasizes Prof. Löwel. On the one hand, the visual system of mice is a well characterized animal model for the plasticity of the brain. On the other hand, the researchers from Jena will combine two special imaging techniques for the first time in the framework of the project. They are available only at a handful of institutions: 1. The optical imaging of nerve cell activity that allows to visualize activity patterns of the brain at a much higher spatial resolution than e.g. an MRI scanner (Löwel Lab). 2. The 2-photon microscopy in vivo (Profs. Holthoff/Witte) which is able to additionally visualize the activity of single brain cells.

The project will be funded for three years. If evaluated positively the team can expect further funding by the BMBF for two more years.

Contact:
Prof. Dr. Siegrid Löwel
Institute of General Zoology and Animal Physiology at
Friedrich-Schiller-University Jena
Ebertstraße 1
D-07743 Jena
Phone: +49 (0)3641 949131
Email: siegrid.loewel@uni-jena.de

Dr. Ute Schönfelder | idw
Further information:
http://www.uni-jena.de

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>