Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Learning after the stroke

17.08.2009
BMBF grants more than EUR 3 million for interdisciplinary research group coordinated by Prof. Dr. Siegrid Löwel at Jena University and at the Bernstein Center for Computational Neuroscience Göttingen

An occluded or burst blood vessel - and the blood supply through the brain is interrupted: stroke. In Germany alone, approximately 200,000 people have a stroke every year.

A fast intensive care saves the lives of many persons affected. But more than two third of the patients suffer from permanent damages. Much of what has been normal before - walking, speaking, and eating - must be learnt again. Often, however, patients cannot recover all their initial abilities.

Why learning is so arduous and often futile after a stroke is to be investigated by scientists from the Jena University and Hospital and a partner in Göttingen in an interdisciplinary research project. In the framework of the funding initiative "Bernstein Focus: Neuronal Basis of Learning", the Federal Ministry of Education and Research (BMBF) plans to fund the collaborative project in an amount of more than EUR 3 million. More than EUR 2.5 million of that go to Jena. The research collaboration is part of the National Network Computational Neuroscience.

"We aim at exploring the reasons for the brain's restricted ability to learn after a stroke", says Prof. Dr. Siegrid Löwel from the University of Jena. The professor of General Zoology and Animal Physiology at Jena University coordinates the research project. Apart from Prof. Löwel and her team, neurologists around Prof. Dr. Otto W. Witte and Prof. Dr. Knut Holthoff at Jena University Hospital as well as Prof. Dr. Christian Hübner from the Jena Institute of Clinical Chemistry and Laboratory Medicine are involved in the research project. On a long-term basis, we wish to develop therapies that help recover the learning ability of the brain." Another partner supporting the consortium is the theoretical physicist Prof. Dr. Fred Wolf from the Max-Planck-Institute for Dynamics and Self-Organization in Göttingen.

The researchers' basic approach depends on the following observation: Due to the shortage of oxygen not only the brain cells immediately next to the stroke are damaged. "From our own studies we know that regions of the brain not immediately affected by the stroke suffer from a loss of plasticity as well", states Löwel. Plasticity in a neurological sense means the ability of brain cells to keep forming new synapses with other neurons if demanded. This is the basis of each learning process.

Which non-local control mechanisms are responsible for the interaction of two distant areas of the brain, the researchers try to find out with the help of experiments on mice. "Using mouse models allows a precise study of how learning, for instance learning to see, works", emphasizes Prof. Löwel. On the one hand, the visual system of mice is a well characterized animal model for the plasticity of the brain. On the other hand, the researchers from Jena will combine two special imaging techniques for the first time in the framework of the project. They are available only at a handful of institutions: 1. The optical imaging of nerve cell activity that allows to visualize activity patterns of the brain at a much higher spatial resolution than e.g. an MRI scanner (Löwel Lab). 2. The 2-photon microscopy in vivo (Profs. Holthoff/Witte) which is able to additionally visualize the activity of single brain cells.

The project will be funded for three years. If evaluated positively the team can expect further funding by the BMBF for two more years.

Contact:
Prof. Dr. Siegrid Löwel
Institute of General Zoology and Animal Physiology at
Friedrich-Schiller-University Jena
Ebertstraße 1
D-07743 Jena
Phone: +49 (0)3641 949131
Email: siegrid.loewel@uni-jena.de

Dr. Ute Schönfelder | idw
Further information:
http://www.uni-jena.de

More articles from Health and Medicine:

nachricht Tracking movement of immune cells identifies key first steps in inflammatory arthritis
23.01.2017 | Massachusetts General Hospital

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>