Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Learning after the stroke

17.08.2009
BMBF grants more than EUR 3 million for interdisciplinary research group coordinated by Prof. Dr. Siegrid Löwel at Jena University and at the Bernstein Center for Computational Neuroscience Göttingen

An occluded or burst blood vessel - and the blood supply through the brain is interrupted: stroke. In Germany alone, approximately 200,000 people have a stroke every year.

A fast intensive care saves the lives of many persons affected. But more than two third of the patients suffer from permanent damages. Much of what has been normal before - walking, speaking, and eating - must be learnt again. Often, however, patients cannot recover all their initial abilities.

Why learning is so arduous and often futile after a stroke is to be investigated by scientists from the Jena University and Hospital and a partner in Göttingen in an interdisciplinary research project. In the framework of the funding initiative "Bernstein Focus: Neuronal Basis of Learning", the Federal Ministry of Education and Research (BMBF) plans to fund the collaborative project in an amount of more than EUR 3 million. More than EUR 2.5 million of that go to Jena. The research collaboration is part of the National Network Computational Neuroscience.

"We aim at exploring the reasons for the brain's restricted ability to learn after a stroke", says Prof. Dr. Siegrid Löwel from the University of Jena. The professor of General Zoology and Animal Physiology at Jena University coordinates the research project. Apart from Prof. Löwel and her team, neurologists around Prof. Dr. Otto W. Witte and Prof. Dr. Knut Holthoff at Jena University Hospital as well as Prof. Dr. Christian Hübner from the Jena Institute of Clinical Chemistry and Laboratory Medicine are involved in the research project. On a long-term basis, we wish to develop therapies that help recover the learning ability of the brain." Another partner supporting the consortium is the theoretical physicist Prof. Dr. Fred Wolf from the Max-Planck-Institute for Dynamics and Self-Organization in Göttingen.

The researchers' basic approach depends on the following observation: Due to the shortage of oxygen not only the brain cells immediately next to the stroke are damaged. "From our own studies we know that regions of the brain not immediately affected by the stroke suffer from a loss of plasticity as well", states Löwel. Plasticity in a neurological sense means the ability of brain cells to keep forming new synapses with other neurons if demanded. This is the basis of each learning process.

Which non-local control mechanisms are responsible for the interaction of two distant areas of the brain, the researchers try to find out with the help of experiments on mice. "Using mouse models allows a precise study of how learning, for instance learning to see, works", emphasizes Prof. Löwel. On the one hand, the visual system of mice is a well characterized animal model for the plasticity of the brain. On the other hand, the researchers from Jena will combine two special imaging techniques for the first time in the framework of the project. They are available only at a handful of institutions: 1. The optical imaging of nerve cell activity that allows to visualize activity patterns of the brain at a much higher spatial resolution than e.g. an MRI scanner (Löwel Lab). 2. The 2-photon microscopy in vivo (Profs. Holthoff/Witte) which is able to additionally visualize the activity of single brain cells.

The project will be funded for three years. If evaluated positively the team can expect further funding by the BMBF for two more years.

Contact:
Prof. Dr. Siegrid Löwel
Institute of General Zoology and Animal Physiology at
Friedrich-Schiller-University Jena
Ebertstraße 1
D-07743 Jena
Phone: +49 (0)3641 949131
Email: siegrid.loewel@uni-jena.de

Dr. Ute Schönfelder | idw
Further information:
http://www.uni-jena.de

More articles from Health and Medicine:

nachricht A whole-body approach to understanding chemosensory cells
13.12.2017 | Tokyo Institute of Technology

nachricht Research reveals how diabetes in pregnancy affects baby's heart
13.12.2017 | University of California - Los Angeles Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>