Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Learning information the hard way may be best 'boot camp' for older brains

24.08.2011
Making mistakes while learning has memory benefits

Canadian researchers have found the first evidence that older brains get more benefit than younger brains from learning information the hard way – via trial-and-error learning.

The study was led by scientists at Baycrest's world-renowned Rotman Research Institute in Toronto and appears online Aug. 24, 2011 in the journal Psychology and Aging, ahead of the print edition.

The finding will surprise professional educators and cognitive rehabilitation clinicians as it challenges a large body of published science which has shown that making mistakes while learning information hurts memory performance for older adults, and that passive "errorless" learning (where the correct answer is provided) is better suited to older brains.

"The scientific literature has traditionally embraced errorless learning for older adults. However, our study has shown that if older adults are learning material that is very conceptual, where they can make a meaningful relationship between their errors and the correct information that they are supposed to remember, in those cases the errors can actually be quite beneficial for the learning process," said Andreé-Ann Cyr, the study's lead investigator.

Cyr conducted the research at Baycrest as a doctoral student in Psychology (University of Toronto), in collaboration with senior author and scientist Dr. Nicole Anderson of Baycrest's Rotman Research Institute. Dr. Anderson specializes in cognitive rehabilitation research with older adults.

In two separate studies, researchers compared the memory benefits of trial-and-error learning (TEL) with errorless learning (EL) in memory exercises with groups of healthy young and older adults. The young adults were in their 20s; the older adults' average age was 70. TEL is considered a more effortful cognitive encoding process where the brain has to "scaffold" its way to making richer associations and linkages in order to reach the correct target information. Errorless learning (EL) is considered passive, or less taxing on the brain, because it provides the correct answer to be remembered during the learning process.

The researchers presented participants with a meaningful "cue" (e.g. type of tooth). The correct target word (e.g. molar) was shown to learners in the EL condition. In the TEL condition, the cue was presented alone, and participants made two guesses (such as canine, incisor) before the correct target "molar" was shown. After a short while, participants performed a memory test that required them to remember the context in which the words were learned (i.e. were they learned through trial-and-error or not).

In both studies, participants remembered the learning context of the target words better if they had been learned through trial-and-error, relative to the errorless condition. This was especially true for the older adults whose performance benefited approximately 2.5 times more relative to their younger peers.

The findings from the Baycrest study may have important implications for how information is taught to older adults in the classroom, and for rehabilitation procedures aimed at delaying cognitive decline – procedures which rely on knowledge of how to train an aging brain, said Cyr.

The authors say future studies are needed to determine how different study materials and memory tasks impact the effect of errors on memory in aging. This will help to clarify the learning contexts in which errors should be avoided or harnessed.

The study was funded by a doctoral award and research grant from the Natural Sciences and Engineering Research Council.

Affiliated with the University of Toronto, Baycrest is a global leader in developing and providing innovations in aging and brain health. It has one of the world's top research institutes in cognitive neuroscience (the Rotman Research Institute), dedicated centres focused on mitigating the impact of age-related illness and impairment, and unmatched global knowledge exchange and commercialization capacity.

Kelly Connelly | EurekAlert!
Further information:
http://www.baycrest.org

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>