Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Learning information the hard way may be best 'boot camp' for older brains

24.08.2011
Making mistakes while learning has memory benefits

Canadian researchers have found the first evidence that older brains get more benefit than younger brains from learning information the hard way – via trial-and-error learning.

The study was led by scientists at Baycrest's world-renowned Rotman Research Institute in Toronto and appears online Aug. 24, 2011 in the journal Psychology and Aging, ahead of the print edition.

The finding will surprise professional educators and cognitive rehabilitation clinicians as it challenges a large body of published science which has shown that making mistakes while learning information hurts memory performance for older adults, and that passive "errorless" learning (where the correct answer is provided) is better suited to older brains.

"The scientific literature has traditionally embraced errorless learning for older adults. However, our study has shown that if older adults are learning material that is very conceptual, where they can make a meaningful relationship between their errors and the correct information that they are supposed to remember, in those cases the errors can actually be quite beneficial for the learning process," said Andreé-Ann Cyr, the study's lead investigator.

Cyr conducted the research at Baycrest as a doctoral student in Psychology (University of Toronto), in collaboration with senior author and scientist Dr. Nicole Anderson of Baycrest's Rotman Research Institute. Dr. Anderson specializes in cognitive rehabilitation research with older adults.

In two separate studies, researchers compared the memory benefits of trial-and-error learning (TEL) with errorless learning (EL) in memory exercises with groups of healthy young and older adults. The young adults were in their 20s; the older adults' average age was 70. TEL is considered a more effortful cognitive encoding process where the brain has to "scaffold" its way to making richer associations and linkages in order to reach the correct target information. Errorless learning (EL) is considered passive, or less taxing on the brain, because it provides the correct answer to be remembered during the learning process.

The researchers presented participants with a meaningful "cue" (e.g. type of tooth). The correct target word (e.g. molar) was shown to learners in the EL condition. In the TEL condition, the cue was presented alone, and participants made two guesses (such as canine, incisor) before the correct target "molar" was shown. After a short while, participants performed a memory test that required them to remember the context in which the words were learned (i.e. were they learned through trial-and-error or not).

In both studies, participants remembered the learning context of the target words better if they had been learned through trial-and-error, relative to the errorless condition. This was especially true for the older adults whose performance benefited approximately 2.5 times more relative to their younger peers.

The findings from the Baycrest study may have important implications for how information is taught to older adults in the classroom, and for rehabilitation procedures aimed at delaying cognitive decline – procedures which rely on knowledge of how to train an aging brain, said Cyr.

The authors say future studies are needed to determine how different study materials and memory tasks impact the effect of errors on memory in aging. This will help to clarify the learning contexts in which errors should be avoided or harnessed.

The study was funded by a doctoral award and research grant from the Natural Sciences and Engineering Research Council.

Affiliated with the University of Toronto, Baycrest is a global leader in developing and providing innovations in aging and brain health. It has one of the world's top research institutes in cognitive neuroscience (the Rotman Research Institute), dedicated centres focused on mitigating the impact of age-related illness and impairment, and unmatched global knowledge exchange and commercialization capacity.

Kelly Connelly | EurekAlert!
Further information:
http://www.baycrest.org

More articles from Health and Medicine:

nachricht Antibiotic effective against drug-resistant bacteria in pediatric skin infections
17.02.2017 | University of California - San Diego

nachricht Tiny magnetic implant offers new drug delivery method
14.02.2017 | University of British Columbia

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>