Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

LCSB coordinates European project on Parkinson’s research

03.12.2015

The Luxembourg Centre for Systems Biomedicine (LCSB) of the University of Luxembourg is coordinating an EU project for research into new active compounds against Parkinson’s disease (PD). SysMedPD (Systems Medicine of Mitochondrial Parkinson’s Disease) is the name of the project that just started with the involvement of five universities and three companies from Luxembourg, Germany, Ireland, the Netherlands and UK. The European Union is funding the researchers of this consortium with a total of 5.9 million euros.

With this funding, they will be developing novel techniques by which to identify and research into active compounds against PD. They will furthermore be advancing drug candidates towards their medical application.


From left: Prof. Jens Schwamborn (head of the LCSB group Development and Cell Biology), Prof. Rudi Balling (LCSB director and coordinator of SysMedPD) und Dr Ronan Fleming (Systems Biochemist

scienceRELATIONS / Universität Luxemburg

“Universities and biopharmaceutical companies complement each other’s expertise ideally in SysMedPD,” says Prof. Rudi Balling, LCSB director and coordinator of SysMedPD. “This creates optimal conditions in which to progress a good deal further in developing diagnoses and therapies for Parkinson’s disease.”

Parkinson’s disease is a gradually progressive disease of human nerve tissue, resulting among other things in muscle tremors and muscle rigidity. The mitochondria of nerve cells are often causally involved in the onset – mitochondria being the power plants of cells, in which biochemical reactions provide energy for cellular metabolic processes.

“We estimate that in about ten to twenty percent of all Parkinson’s patients, their mitochondria do not function properly,” says senior LCSB scientist Dr Ronan Fleming, who is significantly involved in the conception and coordination of SysMedPD. “In order to better diagnose, heal or at least effectively curb the progression of Parkinson’s disease, we must understand this dysfunction of mitochondria in detail.”

The researchers within SysMedPD are first concentrating on such patterns of PD in which the mitochondria are damaged by mutations in individual genes. “Later, the results can then be carried over to patient groups in which multiple genes and environmental factors are involved in the onset of PD,” adds Dr Fleming.

The SysMedPD consortium will tackle this task with different approaches: “At the LCSB, we place emphasis on developing new, computational models by which we can better depict the processes going on inside mitochondria,” Ronan Fleming says. Prof. Jens Schwamborn, head of the LCSB group Development and Cell Biology, describes a complementary approach: “We must verify any computational predictions using experiments. Therefore, in the scope of this EU project, we will also employ advanced cellular models, where skin samples obtained from Parkinson’s disease patients are reprogrammed into living human nerve cells.”

To ensure the research results obtained within SysMedPD are translated into application as quickly as possible, the consortium also has biopharmaceutical companies on board. Their areas of involvement are test development for new active compounds and identification of active compounds.

“The project is organised such that the insights that we and the other academic partners gain will complement those of the companies involved very well,” says Prof. Rudi Balling. “With this close connection between public and private research, we can ensure the EU funding, firstly, is employed optimally in the interest of the PD patients and, secondly, will generate economic stimuli. These are important objectives of the EU that we will fulfil here.”

The SysMedPD partners:
- Germany: University of Lübeck (Prof. Christine Klein), EURICE – European Research and Project Office GmbH (Corinna Hahn)
- Ireland: Maynooth University (Dr Niall Finnerty)
- Luxembourg: University of Luxembourg (Prof. Rudi Balling, Dr Ronan Fleming, Prof. Jens Schwamborn)
- Netherlands: Leiden University (Prof. Thomas Hankemeier), Khondrion BV (Prof. Jan Smeitink), Mimetas BV (Dr Paul Vulto)
- Great Britain: University College London (Prof. Anthony Schapira)

Weitere Informationen:

http://www.uni.lu/lcsb - Homepage of the Luxembourg Centre for Systems Biomedicine

Britta Schlüter | Universität Luxemburg - Université du Luxembourg

More articles from Health and Medicine:

nachricht World first: Massive thrombosis removed during early pregnancy
20.07.2017 | Universitätsspital Bern

nachricht Therapy of preterm birth in sight?
19.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>