Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lazy eye treatment times could be drastically reduced

10.12.2008
Treatment times for amblyopia — more commonly known as ‘lazy eye’ — could be drastically reduced thanks to research carried out at The University of Nottingham.

Amblyopia is thought to affect up to 2.5 per cent of people and accounts for around 90 per cent of all children’s eye appointments in the UK. Occlusion therapy — patching the normal eye for lengthy periods to ‘train’ the affected eye — is the main treatment for amblyopia. However, this method can be distressing to children, is unpopular with parents and can adversely effect educational development. This type of therapy has been used in various forms since 1743 and has long been considered to only be effective up until late childhood.

The new treatments developed in the Visual Neuroscience Group in the University’s School of Psychology have not only reduced potential treatment times by an unprecedented amount, they have also proved that it is possible to treat amblyopia in adults. Early results suggest gains, that would have required around 120 hours of occlusion therapy to achieve, can be produced after just 10 hours.

Adult test subjects have undertaken challenging visual tasks under computer-controlled conditions. Academics hope that these promising results could be used to develop a child-friendly game that could treat amblyopia. There is also the potential to use these new treatments to supplement occlusion therapy.

The £60,000 project — A Study of Perceptual Learning Effects in Amblyopia — has been funded by the College of Optometrists. Amblyopia is a developmental problem in the brain, not the eye. The part of the brain dealing with vision from the affected eye develops abnormally as a result of atypical visual experience early in life. This results in markedly different levels of vision in each eye which cannot be remedied with spectacles.

As well as looking at potential treatments for the condition, the study examines the level of neural plasticity in the adult brain — the ability of a neural system to change with experience.

The work is being carried out by Andrew Astle, a PhD student at the University.

“The results so far show a drastic improvement on patching, and disprove the long-held belief that adults cannot be treated for this type of condition,” Andrew said. “However, the study is not complete and we’re still looking for subjects to take part in the tests.”

Work set to start in spring 2009 at the University will build on Andrew’s results, examining amblyopia in children and examining the functional and structural organisation of the visual cortex. This EU-wide study has been funded by a European Consortium FP7 grant to the tune of 2.6m Euro. Professor Paul McGraw and Dr Ben Webb in the Visual Neuroscience Group will look at the effects and treatment of amblyopia in children. Other European institutions, including the University of Florence, the Max Planck Institute for Neuroscience and University College London, will examine the condition from the molecular level to its behavioural impact on animal models.

It is thought that results from this study could be translated to other conditions where recovery is limited due to restricted neural plasticity — including brain tumours, stroke, degenerative diseases and trauma.

Professor McGraw said “Andrew’s results suggest that the adult amblyopic visual system retains a great deal more neural plasticity than previously thought. Harnessing this plasticity offers a new way of treating this common condition and opens the door to developing novel pharmacological and behavioural interventions for a range of neurological deficits.”

To take part in the Study of Perceptual Learning Effects in Amblyopia, contact Andrew Astle at lpxaa1@nottingham.ac.uk

Emma Thorne | alfa
Further information:
http://www.nottingham.ac.uk
http://communications.nottingham.ac.uk/News/Article/Lazy-eye-treatment-times-could-be-drastically-reduced-new-research-shows.html

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>