Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

“Lazy eye” disorder – a promising new therapeutic approach

23.04.2013
A research team led by Dr. Robert Hess from McGill University and the Research Institute of the McGill University Health Centre (RI-MUHC) has used the popular puzzle video game Tetris in an innovative approach to treat adult amblyopia, commonly known as “lazy eye”.

By distributing information between the two eyes in a complementary fashion, the video game trains both eyes to work together, which is counter to previous treatments for the disorder (e.g. patching).

This medical breakthrough provides direct evidence that alleviating suppression of the weaker eye, by forcing both eyes to cooperate, increases the level of plasticity in the brain and allows the amblyopic brain to relearn. The research is published in the prestigious journal Current Biology.

Amblyopia is the most common cause of visual impairment in childhood, affecting up to 3 per cent of the population. It is caused by poor processing in the brain, which results in suppression of the weaker eye by the stronger eye. Previous treatments for the disorder, which have focused largely on covering the stronger eye in order to force the weaker eye to work, have proven only partially successful in children and have been ineffective in adults.

“The key to improving vision for adults, who currently have no other treatment options, was to set up conditions that would enable the two eyes to cooperate for the first time in a given task,” says Dr. Robert Hess, senior author of the paper and Director of Research Department of Ophthalmology at the RI-MUHC and at McGill University.

According to Dr. Hess and his colleagues, the adult human brain has a significant degree of plasticity and this provides the basis for treating a range of conditions where vision has been lost as a result of a disrupted period of early visual development in childhood. The researchers examined the potential of treating amblyopic adults using the video game Tetris, which involves connecting different shaped blocks as they fall to the ground.

“Using head-mounted video goggles we were able to display the game dichoptically, where one eye was allowed to see only the falling objects, and the other eye was allowed to see only the ground plane objects,” explains Dr. Hess, who also serves as director of McGill Vision Research. “Forcing the eyes to work together, we believed, would improve vision in the lazy eye.”

The researchers tested a sample of 18 adults with amblyopia. Nine participants played the game monocularly with the weaker eye, while the stronger eye was patched; the other nine played the same game dichoptically, where each eye was allowed to view a separate part of the game. After two weeks, the group playing the dichoptic game showed a dramatic improvement in the vision of the weaker eye as well as in 3-D depth perception. When the monocular patching group, who had showed only a moderate improvement, was switched to the new dichoptic training, the vision of this group also improved dramatically.

The suitability of this treatment in children will be assessed later this year in a clinical trial across North America.

About this study:

This work was supported by a grant from the Canadian Institutes of Health Research (CIHR).

This Correspondence was co-authored by Jinrong Li, Daming Deng and Minbin Yu (State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangzhou, China); Benjamin Thompson (Department of Optometry and Vision Science, University of Auckland, New Zealand); Lily Y.L. Chan (School of Optometry, The Hong Kong Polytechnic University, Hong Kong, China); and Robert F. Hess (Department of Ophthalmology, McGill University and RI-MUHC, Montreal, Canada).

The Correspondence is now available at the following link: http://www.cell.com/current-biology/abstract/S0960-9822(13)00094-8

Useful links

Current Biology:cell.com/current-biology
McGill University Health Centre (MUHC): muhc.ca
Research Institute of the MUHC (RI-MUHC): muhc.ca/research
McGill University: mcgill.ca
Contact:
Julie Robert
Public Affairs and Strategic Planning
McGill University Health Centre
514 934 1934 ext. 71381
julie.robert@muhc.mcgill.ca
muhc.ca | facebook.com/cusm.muhc

Julie Robert | McGill University Health Centre
Further information:
http://www.muhc.ca
http://www.muhc.mcgill.ca

More articles from Health and Medicine:

nachricht Improving memory with magnets
28.03.2017 | McGill University

nachricht Graphene-based neural probes probe brain activity in high resolution
28.03.2017 | Graphene Flagship

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>