Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

“Lazy eye” disorder – a promising new therapeutic approach

23.04.2013
A research team led by Dr. Robert Hess from McGill University and the Research Institute of the McGill University Health Centre (RI-MUHC) has used the popular puzzle video game Tetris in an innovative approach to treat adult amblyopia, commonly known as “lazy eye”.

By distributing information between the two eyes in a complementary fashion, the video game trains both eyes to work together, which is counter to previous treatments for the disorder (e.g. patching).

This medical breakthrough provides direct evidence that alleviating suppression of the weaker eye, by forcing both eyes to cooperate, increases the level of plasticity in the brain and allows the amblyopic brain to relearn. The research is published in the prestigious journal Current Biology.

Amblyopia is the most common cause of visual impairment in childhood, affecting up to 3 per cent of the population. It is caused by poor processing in the brain, which results in suppression of the weaker eye by the stronger eye. Previous treatments for the disorder, which have focused largely on covering the stronger eye in order to force the weaker eye to work, have proven only partially successful in children and have been ineffective in adults.

“The key to improving vision for adults, who currently have no other treatment options, was to set up conditions that would enable the two eyes to cooperate for the first time in a given task,” says Dr. Robert Hess, senior author of the paper and Director of Research Department of Ophthalmology at the RI-MUHC and at McGill University.

According to Dr. Hess and his colleagues, the adult human brain has a significant degree of plasticity and this provides the basis for treating a range of conditions where vision has been lost as a result of a disrupted period of early visual development in childhood. The researchers examined the potential of treating amblyopic adults using the video game Tetris, which involves connecting different shaped blocks as they fall to the ground.

“Using head-mounted video goggles we were able to display the game dichoptically, where one eye was allowed to see only the falling objects, and the other eye was allowed to see only the ground plane objects,” explains Dr. Hess, who also serves as director of McGill Vision Research. “Forcing the eyes to work together, we believed, would improve vision in the lazy eye.”

The researchers tested a sample of 18 adults with amblyopia. Nine participants played the game monocularly with the weaker eye, while the stronger eye was patched; the other nine played the same game dichoptically, where each eye was allowed to view a separate part of the game. After two weeks, the group playing the dichoptic game showed a dramatic improvement in the vision of the weaker eye as well as in 3-D depth perception. When the monocular patching group, who had showed only a moderate improvement, was switched to the new dichoptic training, the vision of this group also improved dramatically.

The suitability of this treatment in children will be assessed later this year in a clinical trial across North America.

About this study:

This work was supported by a grant from the Canadian Institutes of Health Research (CIHR).

This Correspondence was co-authored by Jinrong Li, Daming Deng and Minbin Yu (State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangzhou, China); Benjamin Thompson (Department of Optometry and Vision Science, University of Auckland, New Zealand); Lily Y.L. Chan (School of Optometry, The Hong Kong Polytechnic University, Hong Kong, China); and Robert F. Hess (Department of Ophthalmology, McGill University and RI-MUHC, Montreal, Canada).

The Correspondence is now available at the following link: http://www.cell.com/current-biology/abstract/S0960-9822(13)00094-8

Useful links

Current Biology:cell.com/current-biology
McGill University Health Centre (MUHC): muhc.ca
Research Institute of the MUHC (RI-MUHC): muhc.ca/research
McGill University: mcgill.ca
Contact:
Julie Robert
Public Affairs and Strategic Planning
McGill University Health Centre
514 934 1934 ext. 71381
julie.robert@muhc.mcgill.ca
muhc.ca | facebook.com/cusm.muhc

Julie Robert | McGill University Health Centre
Further information:
http://www.muhc.ca
http://www.muhc.mcgill.ca

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>