Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lawrence Livermore research identifies precise measurement of radiation damage

06.06.2012
Lawrence Livermore National Laboratory researchers have for the first time simulated and quantified the early stages of radiation damage that will occur in a given material.

"A full understanding of the early stages of the radiation damage process provides knowledge and tools to manipulate them to our advantage," said Alfredo Correa, a Lawrence Fellow from Lawrence Livermore National Laboratory in the Quantum Simulations Group.


Model of the electronic wake (blue surfaces) generated by an energetic proton (red sphere) traveling in an aluminum crystal (yellow spheres). The resulting change in electronic density is responsible for modification of chemical bonds between the atoms and consequently for a change in their interactions.

Nuclear radiation leads to highly energetic ions that can penetrate large distances within matter, often leading to the accumulation of damage sites as the ions pass through the material.

During this process, the energetic ions eventually slow down as energy is lost by friction with the materials' electrons. Like a speedboat moving through a calm body of water, the passage of fast ions creates a disturbance in the electron density in the shape of a wake.

Correa along with colleagues Alfredo Caro from Los Alamos National Laboratory, Jorge Kohanoff from the the UK and Emilio Artacho and Daniel Sánchez-Portal from Spain, have directly simulated this quantum friction of the electrons in a real material for the very first time.

The team simulated the passage of a fast proton through crystalline aluminum. By accounting for the energy absorbed by the electrons and the magnitude of the impulse given to the aluminum atoms, the team was able to predict the rate at which the proton is stopped and the amount of momentum transferred. This is a precise atomistic simulation of the deposited energy and momentum, which is ultimately responsible for the damage that is produced in the material.

The new method opens up the possibility to predict the effect of radiation on a wide range of complex materials. The research not only applies to materials for nuclear applications, but also for materials related to the space industry, and new processing techniques for lasers and highly energetic ions. In biology and medicine, it also may contribute to understanding the effects of radiation on living tissues, both for damage and therapeutic processes.

In a broader sense, the new simulation capability represents the first step toward a unified method for the simultaneous simulation of electron and ion dynamics. The research is highlighted on the cover of the May 25 issue of Physical Review Letters.

More Information

"Nonadiabatic Forces in Ion-Solid Interactions: The Initial Stages of Radiation Damage," Physical Review Letters, May 21, 2012

Quantum Simulations Group

"Simulating Materials for Nanostructural Designs," Science & Technology Review, January/February 2006

"Helium rains inside Jovian planets," LLNL news release, Jan. 26, 2009

Founded in 1952, Lawrence Livermore National Laboratory provides solutions to our nation's most important national security challenges through innovative science, engineering and technology. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administration.

Anne Stark | EurekAlert!
Further information:
http://www.llnl.gov

Further reports about: Letters Livermore Nuclear Physical Quantum Security Forum Simulations aluminum atom

More articles from Health and Medicine:

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

nachricht How to turn white fat brown
07.12.2016 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>