Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Language as a Window Into Sociability

17.08.2010
Brainwave activity associated with language processing differs sharply in two disorders with opposite social profiles: Autism and Williams syndrome.

People with Williams syndrome-known for their indiscriminate friendliness and ease with strangers-process spoken language differently from people with autism spectrum disorders-characterized by social withdrawal and isolation-found researchers at the Salk Institute for Biological Studies.

Their findings, to be published in a forthcoming issue of Social Cognitive and Affective Neuroscience, will help to generate more specific hypotheses regarding language perception and processing in both Williams syndrome and autism spectrum disorders, as well as the core mechanisms involved in the development of communication and social skills.

"Spoken language is probably the most important form of social interaction between people and, maybe not surprisingly, we found that the way the brain processes language mirrors the contrasting social phenotypes of Williams syndrome and autism spectrum disorders," says lead author Inna Fishman, Ph.D., a neuropsychologist in the Laboratory of Cognitive Neuroscience at the Salk, who conceived the study together with Debra Mills, Ph.D., currently a reader at Bangor University in UK.

Autism spectrum disorders and Williams syndrome are both neurodevelopmental disorders but their manifestations couldn't be more different: While autistic individuals live in a world where objects make much more sense than people do, people with Williams syndrome are social butterflies who bask in other people's attention.

Despite myriad health problems, generally low IQs and severe spatial problems, people with Williams syndrome are irresistibly drawn to strangers, look intently at people's faces, remember names and faces with ease, and are colorful and skillful storytellers.

"The discrepancy between their language ability and IQ is startling," says co-author Ursula Bellugi, professor and director of the Laboratory of Cognitive Neuroscience at the Salk Institute, who has been studying the behavioral aspects of Williams syndrome for more than 20 years. "Children with Williams syndrome have elaborate and rich vocabularies and use very descriptive, affect-rich expressive language, which makes their speech very engaging."

In contrast, many people with autism struggle to learn and use language effectively, especially when talking to other people. Chit-chat and gossip, the social glue that binds people together, mean nothing to them. Although there is considerable variation in linguistic ability-from the absence of functional speech to near normal language skills-deficits in semantic processing, especially interpreting language in context, are common across the whole spectrum of autistic disorders, including Asperger syndrome.

"It is this divide in language skills and use, which mirrors the opposite social profiles, that led us to explore how brains of individuals with Williams syndrome and autistic spectrum disorders process language," says Fishman.

For their study, she and her colleagues compared brain response patterns linked to language processing in individuals with Williams syndrome, autism spectrum disorders and healthy controls. They focused on the so-called N400, a distinct pattern of electrical brain activity that can be measured by electrodes placed on the scalp. Known as ERP or event-related potential, the N400 is part of the normal brain response to words and other meaningful or potentially meaningful stimuli and peaks about 400 milliseconds after the stimulus.

When presented with a typical sentence that finished with an odd ending ("I take my coffee with sugar and shoes"), individuals with Williams syndrome exhibited an abnormally large N400 response indicating that they are particularly sensitive and attuned to semantic aspects of language. In contrast, individuals with ASD did not show this negativity, suggesting that the inability to integrate lexical information into the ongoing context may underlie their communicative and language impairments. Healthy people fell between those two extremes.

"The N400 reflects the cognitive demand incurred by the integration of a meaningful stimulus such as a word into a more general semantic context such as a sentence," explains Fishman. The smaller N400 effect found in the ASD group suggests that they make less use of contextual information, which makes it harder for them to grasp the meaning of words.

"Our results suggest that language skills, or their brain correlates, go hand-in-hand with the level of sociability, potentially mediating the likelihood of interaction and communication with others," she says. In fact, Fishman and her colleagues have preliminary data supporting this association between the sociability and the magnitude of one's N400 response, among individuals with WS.

To gain a better understanding of the neural and genetic correlates of social behavior in different social phenotypes Bellugi's team is now integrating these findings with the exquisitely mapped genetic profile of Williams syndrome. They hypothesize that specific genes in the Williams syndrome region may be involved in the dysregulation of specific neuropeptide and hormonal systems, which could explain the observed hypersocial behavior.

Researchers who also contributed to the work include A. Yam, a former research assistant at the Laboratory for Cognitive Neuroscience, and Alan Lincoln, Ph.D., professor at the Alliant International University in San Diego.

The work was funded in part by the National Institute of Child Health and Human Development and the National Institute of Mental Health.

About the Salk Institute for Biological Studies:
The Salk Institute for Biological Studies is one of the world's preeminent basic research institutions, where internationally renowned faculty probe fundamental life science questions in a unique, collaborative, and creative environment. Focused both on discovery and on mentoring future generations of researchers, Salk scientists make groundbreaking contributions to our understanding of cancer, aging, Alzheimer's, diabetes and infectious diseases by studying neuroscience, genetics, cell and plant biology, and related disciplines.

Faculty achievements have been recognized with numerous honors, including Nobel Prizes and memberships in the National Academy of Sciences. Founded in 1960 by polio vaccine pioneer Jonas Salk, M.D., the Institute is an independent nonprofit organization and architectural landmark.

The Salk Institute proudly celebrates five decades of scientific excellence in basic research.

Gina Kirchweger | Newswise Science News
Further information:
http://www.salk.edu

More articles from Health and Medicine:

nachricht Rabies viruses reveal wiring in transparent brains
19.01.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht On track to heal leukaemia
18.01.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>