Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laboratory for Molecular Exercise Physiology at Mainz University is up and running

08.02.2011
Specialists at Johannes Gutenberg University Mainz, Germany develop tests to detect gene doping and individual exercise concepts for therapeutic purposes as well as for popular sports and for high-performance athletes

The specialists for Sports Medicine at Johannes Gutenberg University Mainz (JGU are already in the starting blocks: Their ambitious objective is to develop a routine test for gene doping in time for the London Olympic Games in 2012. With the completion of the new Laboratory for Molecular Exercise Physiology on the JGU campus in January 2011, they are now ready to start working on this and other projects.

Professor Perikles Simon, specialist in sports medicine and neuroscientist, came to Mainz University in 2009 as director of the Division of Sports Medicine, Prevention, and Rehabilitation. Working in close collaboration with his former colleagues in Tübingen, Simon developed a test that uses conventional blood samples to provide conclusive proof of gene doping. The process was presented in September 2010, and applications have been submitted for the relevant international patents. There was previously no practicable method that could be used to determine whether an athlete had undergone doping using EPO or other genes. Indeed, it was thought that there was no way a corresponding test could be developed. It is not yet clear to what extent athletes are already using gene transfer as a method of enhancing performance. Over the year 2011, the World Anti-Doping Agency (WADA) will be contributing more than half a million US dollars to the project to develop a routine test for gene doping, which may be available in time for the next Olympic Games.

With the Laboratory for Molecular Exercise Physiology now on track, the field of Sports Medicine at Mainz University will increasingly be focusing on aspects of customized diagnostics and treatment. This is a new approach that takes individual personal circumstances into account when it comes to tailoring exercise to the demands of mass and professional sports, and, more particular even, to the stringent requirements of therapeutic applications. To this end, JGU's Sports Medicine and the University Medical Center Mainz are planning close collaboration - starting in projects on colon cancer, autoimmune disorders, and psychological disorders. "Exercise increases levels of free circulating DNA in the blood - a circumstance that may help us for improve diagnostics" explains Professor Simon. The participating researchers hope that they will not only be able to improve the reliability of diagnostic tests for primary disorders, but also to better adapt adjuvant sport and exercise therapy concepts to the needs of individual patients. "Patients respond differently to sport and exercise; in some cases, the outcome is very good. But others do not respond at all or even experience deterioration of their status." The idea is to use molecular diagnostics in order to predict what adjuvant therapy approach is likely to be most beneficial. As it becomes possible to directly account for more and more blood parameters, popular and high-performance sport will be revolutionized: it may even be possible to develop sophisticated analytical techniques that can show whether a further intensification of training will result in improvement of performance or not.

For their work on molecular biology and genetics, Simon and his team have one biosafety level BSL 1 laboratory and four BSL 2 genetic technology laboratories at their disposal. JGU is thus one of the few universities in Germany equipped to carry out molecular and genetic research in sports medicine. The construction costs amounting to 1.2 million Euros were granted under the second phase of the "Knowledge Creates Future" program of Rhineland-Palatinate. Furthermore, research projects in the field of Sports Medicine are sponsored by groups such as the Dr Gerhard and Martha Röttger Foundation and the Kalkhof-Rose Foundation. In developing the gene doping test, Mainz University's Division of Sports Medicine is collaborating with the University Hospital in Tübingen, Germany and with the International Center for Genetic Engineering and Biotechnology (ICGEB) in Trieste in Italy.

Petra Giegerich | idw
Further information:
http://www.uni-mainz.de/eng/14021.php

More articles from Health and Medicine:

nachricht Researchers release the brakes on the immune system
18.10.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>