Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laboratory for Molecular Exercise Physiology at Mainz University is up and running

08.02.2011
Specialists at Johannes Gutenberg University Mainz, Germany develop tests to detect gene doping and individual exercise concepts for therapeutic purposes as well as for popular sports and for high-performance athletes

The specialists for Sports Medicine at Johannes Gutenberg University Mainz (JGU are already in the starting blocks: Their ambitious objective is to develop a routine test for gene doping in time for the London Olympic Games in 2012. With the completion of the new Laboratory for Molecular Exercise Physiology on the JGU campus in January 2011, they are now ready to start working on this and other projects.

Professor Perikles Simon, specialist in sports medicine and neuroscientist, came to Mainz University in 2009 as director of the Division of Sports Medicine, Prevention, and Rehabilitation. Working in close collaboration with his former colleagues in Tübingen, Simon developed a test that uses conventional blood samples to provide conclusive proof of gene doping. The process was presented in September 2010, and applications have been submitted for the relevant international patents. There was previously no practicable method that could be used to determine whether an athlete had undergone doping using EPO or other genes. Indeed, it was thought that there was no way a corresponding test could be developed. It is not yet clear to what extent athletes are already using gene transfer as a method of enhancing performance. Over the year 2011, the World Anti-Doping Agency (WADA) will be contributing more than half a million US dollars to the project to develop a routine test for gene doping, which may be available in time for the next Olympic Games.

With the Laboratory for Molecular Exercise Physiology now on track, the field of Sports Medicine at Mainz University will increasingly be focusing on aspects of customized diagnostics and treatment. This is a new approach that takes individual personal circumstances into account when it comes to tailoring exercise to the demands of mass and professional sports, and, more particular even, to the stringent requirements of therapeutic applications. To this end, JGU's Sports Medicine and the University Medical Center Mainz are planning close collaboration - starting in projects on colon cancer, autoimmune disorders, and psychological disorders. "Exercise increases levels of free circulating DNA in the blood - a circumstance that may help us for improve diagnostics" explains Professor Simon. The participating researchers hope that they will not only be able to improve the reliability of diagnostic tests for primary disorders, but also to better adapt adjuvant sport and exercise therapy concepts to the needs of individual patients. "Patients respond differently to sport and exercise; in some cases, the outcome is very good. But others do not respond at all or even experience deterioration of their status." The idea is to use molecular diagnostics in order to predict what adjuvant therapy approach is likely to be most beneficial. As it becomes possible to directly account for more and more blood parameters, popular and high-performance sport will be revolutionized: it may even be possible to develop sophisticated analytical techniques that can show whether a further intensification of training will result in improvement of performance or not.

For their work on molecular biology and genetics, Simon and his team have one biosafety level BSL 1 laboratory and four BSL 2 genetic technology laboratories at their disposal. JGU is thus one of the few universities in Germany equipped to carry out molecular and genetic research in sports medicine. The construction costs amounting to 1.2 million Euros were granted under the second phase of the "Knowledge Creates Future" program of Rhineland-Palatinate. Furthermore, research projects in the field of Sports Medicine are sponsored by groups such as the Dr Gerhard and Martha Röttger Foundation and the Kalkhof-Rose Foundation. In developing the gene doping test, Mainz University's Division of Sports Medicine is collaborating with the University Hospital in Tübingen, Germany and with the International Center for Genetic Engineering and Biotechnology (ICGEB) in Trieste in Italy.

Petra Giegerich | idw
Further information:
http://www.uni-mainz.de/eng/14021.php

More articles from Health and Medicine:

nachricht Laser activated gold pyramids could deliver drugs, DNA into cells without harm
24.03.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht What does congenital Zika syndrome look like?
24.03.2017 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>