Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laboratory for Molecular Exercise Physiology at Mainz University is up and running

08.02.2011
Specialists at Johannes Gutenberg University Mainz, Germany develop tests to detect gene doping and individual exercise concepts for therapeutic purposes as well as for popular sports and for high-performance athletes

The specialists for Sports Medicine at Johannes Gutenberg University Mainz (JGU are already in the starting blocks: Their ambitious objective is to develop a routine test for gene doping in time for the London Olympic Games in 2012. With the completion of the new Laboratory for Molecular Exercise Physiology on the JGU campus in January 2011, they are now ready to start working on this and other projects.

Professor Perikles Simon, specialist in sports medicine and neuroscientist, came to Mainz University in 2009 as director of the Division of Sports Medicine, Prevention, and Rehabilitation. Working in close collaboration with his former colleagues in Tübingen, Simon developed a test that uses conventional blood samples to provide conclusive proof of gene doping. The process was presented in September 2010, and applications have been submitted for the relevant international patents. There was previously no practicable method that could be used to determine whether an athlete had undergone doping using EPO or other genes. Indeed, it was thought that there was no way a corresponding test could be developed. It is not yet clear to what extent athletes are already using gene transfer as a method of enhancing performance. Over the year 2011, the World Anti-Doping Agency (WADA) will be contributing more than half a million US dollars to the project to develop a routine test for gene doping, which may be available in time for the next Olympic Games.

With the Laboratory for Molecular Exercise Physiology now on track, the field of Sports Medicine at Mainz University will increasingly be focusing on aspects of customized diagnostics and treatment. This is a new approach that takes individual personal circumstances into account when it comes to tailoring exercise to the demands of mass and professional sports, and, more particular even, to the stringent requirements of therapeutic applications. To this end, JGU's Sports Medicine and the University Medical Center Mainz are planning close collaboration - starting in projects on colon cancer, autoimmune disorders, and psychological disorders. "Exercise increases levels of free circulating DNA in the blood - a circumstance that may help us for improve diagnostics" explains Professor Simon. The participating researchers hope that they will not only be able to improve the reliability of diagnostic tests for primary disorders, but also to better adapt adjuvant sport and exercise therapy concepts to the needs of individual patients. "Patients respond differently to sport and exercise; in some cases, the outcome is very good. But others do not respond at all or even experience deterioration of their status." The idea is to use molecular diagnostics in order to predict what adjuvant therapy approach is likely to be most beneficial. As it becomes possible to directly account for more and more blood parameters, popular and high-performance sport will be revolutionized: it may even be possible to develop sophisticated analytical techniques that can show whether a further intensification of training will result in improvement of performance or not.

For their work on molecular biology and genetics, Simon and his team have one biosafety level BSL 1 laboratory and four BSL 2 genetic technology laboratories at their disposal. JGU is thus one of the few universities in Germany equipped to carry out molecular and genetic research in sports medicine. The construction costs amounting to 1.2 million Euros were granted under the second phase of the "Knowledge Creates Future" program of Rhineland-Palatinate. Furthermore, research projects in the field of Sports Medicine are sponsored by groups such as the Dr Gerhard and Martha Röttger Foundation and the Kalkhof-Rose Foundation. In developing the gene doping test, Mainz University's Division of Sports Medicine is collaborating with the University Hospital in Tübingen, Germany and with the International Center for Genetic Engineering and Biotechnology (ICGEB) in Trieste in Italy.

Petra Giegerich | idw
Further information:
http://www.uni-mainz.de/eng/14021.php

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>