Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Laboratory for Molecular Exercise Physiology at Mainz University is up and running

Specialists at Johannes Gutenberg University Mainz, Germany develop tests to detect gene doping and individual exercise concepts for therapeutic purposes as well as for popular sports and for high-performance athletes

The specialists for Sports Medicine at Johannes Gutenberg University Mainz (JGU are already in the starting blocks: Their ambitious objective is to develop a routine test for gene doping in time for the London Olympic Games in 2012. With the completion of the new Laboratory for Molecular Exercise Physiology on the JGU campus in January 2011, they are now ready to start working on this and other projects.

Professor Perikles Simon, specialist in sports medicine and neuroscientist, came to Mainz University in 2009 as director of the Division of Sports Medicine, Prevention, and Rehabilitation. Working in close collaboration with his former colleagues in Tübingen, Simon developed a test that uses conventional blood samples to provide conclusive proof of gene doping. The process was presented in September 2010, and applications have been submitted for the relevant international patents. There was previously no practicable method that could be used to determine whether an athlete had undergone doping using EPO or other genes. Indeed, it was thought that there was no way a corresponding test could be developed. It is not yet clear to what extent athletes are already using gene transfer as a method of enhancing performance. Over the year 2011, the World Anti-Doping Agency (WADA) will be contributing more than half a million US dollars to the project to develop a routine test for gene doping, which may be available in time for the next Olympic Games.

With the Laboratory for Molecular Exercise Physiology now on track, the field of Sports Medicine at Mainz University will increasingly be focusing on aspects of customized diagnostics and treatment. This is a new approach that takes individual personal circumstances into account when it comes to tailoring exercise to the demands of mass and professional sports, and, more particular even, to the stringent requirements of therapeutic applications. To this end, JGU's Sports Medicine and the University Medical Center Mainz are planning close collaboration - starting in projects on colon cancer, autoimmune disorders, and psychological disorders. "Exercise increases levels of free circulating DNA in the blood - a circumstance that may help us for improve diagnostics" explains Professor Simon. The participating researchers hope that they will not only be able to improve the reliability of diagnostic tests for primary disorders, but also to better adapt adjuvant sport and exercise therapy concepts to the needs of individual patients. "Patients respond differently to sport and exercise; in some cases, the outcome is very good. But others do not respond at all or even experience deterioration of their status." The idea is to use molecular diagnostics in order to predict what adjuvant therapy approach is likely to be most beneficial. As it becomes possible to directly account for more and more blood parameters, popular and high-performance sport will be revolutionized: it may even be possible to develop sophisticated analytical techniques that can show whether a further intensification of training will result in improvement of performance or not.

For their work on molecular biology and genetics, Simon and his team have one biosafety level BSL 1 laboratory and four BSL 2 genetic technology laboratories at their disposal. JGU is thus one of the few universities in Germany equipped to carry out molecular and genetic research in sports medicine. The construction costs amounting to 1.2 million Euros were granted under the second phase of the "Knowledge Creates Future" program of Rhineland-Palatinate. Furthermore, research projects in the field of Sports Medicine are sponsored by groups such as the Dr Gerhard and Martha Röttger Foundation and the Kalkhof-Rose Foundation. In developing the gene doping test, Mainz University's Division of Sports Medicine is collaborating with the University Hospital in Tübingen, Germany and with the International Center for Genetic Engineering and Biotechnology (ICGEB) in Trieste in Italy.

Petra Giegerich | idw
Further information:

More articles from Health and Medicine:

nachricht NIH scientists describe potential antibody treatment for multidrug-resistant K. pneumoniae
14.03.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht Researchers identify key step in viral replication
13.03.2018 | University of Pittsburgh Schools of the Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>