Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New lab-on-a-chip measures mechanics of bacteria colonies

02.07.2009
Researchers at the University of Michigan have devised a microscale tool to help them understand the mechanical behavior of biofilms, slimy colonies of bacteria involved in most human infectious diseases.

Most bacteria in nature take the form of biofilms. Bacteria are single-celled organisms, but they rarely live alone, said John Younger, associate chair for research in the Department of Emergency Medicine at the U-M Health System. Younger is a co-author of a paper about the research that will be the cover story of the July 7 edition of Langmuir.

The new tool is a microfluidic device, also known as a "lab-on-a-chip." Representing a new application of microfluidics, the device measures biofilms' resistance to pressure. Biofilms experience various kinds of pressure in nature and in the body as they squeeze through capillaries and adhere to the surfaces of medical devices, for example.

"If you want to understand biofilms and their life cycle, you need to consider their genetics, but also their mechanical properties. You need to think of biofilms as materials that respond to forces, because how they live in the environment depends on that response," said Mike Solomon, associate professor of chemical engineering and macromolecular science and engineering, who is senior author of the paper.

Mechanical forces are at play when our bodies defend against these bacterial colonies as well, Younger says.

"We think a lot of host defense boils down to doing some kind of physical work on these materials, from commonplace events like hand-washing and coughing to more mysterious processes like removing them out of the bloodstream during a serious infection," he said. "You can study gene expression patterns as much as you want, but until you know when the materials will bend or break, you don't really know what the immune system has to do from a physical perspective to fight this opponent."

Researchers haven't studied these properties yet because there hasn't been a good way to examine biofilms at the appropriate scale.

The U-M microfluidic device provides the right scale. The channel-etched chip, made from a flexible polymer, allows researchers to study minute samples of between 50 and 500 bacterial cells that form biofilms of 10-50 microns in size. A micron is one-millionth of a meter. A human hair is about 100 microns wide.

Such small samples behave in the device as they do in the body. Tools that require larger samples don't always give an accurate picture of how a particular substance behaves on the smallest scales.

The researchers found that the biofilms they studied had a greater elasticity than previous methods had measured. They also discovered a "strain hardening response," which means that the more pressure they applied to the biofilms, the more resistance the materials put forth.

If doctors and engineers can gain a greater understanding of how biofilms behave, they could perhaps design medical equipment that is more difficult for the bacteria to adhere to, Younger said.

The experiments were performed on colonies of Staphylococcus epidermidis and Klebsiella pneumoniae, which are known to cause infections in hospitals.

The new microfluidic device could also be used to measure the resistance of various other soft-solid materials in the consumer products, food science, biomaterials and pharmaceutical fields.

The paper is called, "Flexible Microfluidic Device for Mechanical Property Characterization of Soft Viscoelastic Solids Such as Bacterial Biofilms." The first author is Danial Hohne, a recently-graduated Ph.D. student in the Department of Chemical Engineering.

The research is funded by the National Institutes of Health, the National Institute of General Medical Sciences, the U-M Center for Computational Medicine and Biology and the Department of Emergency Medicine.

For more information:

Michael Solomon:
http://www.engin.umich.edu/dept/cheme/people/solomon.html
John Younger:
http://sitemaker.umich.edu/younger/the_younger_lab
Michigan Engineering:
The University of Michigan College of Engineering is ranked among the top engineering schools in the country. At more than $130 million annually, its engineering research budget is one of largest of any public university. Michigan Engineering is home to 11 academic departments and a National Science Foundation Engineering Research Center. The college plays a leading role in the Michigan Memorial Phoenix Energy Institute and hosts the world class Lurie Nanofabrication Facility. Michigan Engineering's premier scholarship, international scale and multidisciplinary scope combine to create The Michigan Difference.

Nicole Casal Moore | EurekAlert!
Further information:
http://www.umich.edu
http://www.engin.umich.edu/

More articles from Health and Medicine:

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

nachricht The first analysis of Ewing's sarcoma methyloma opens doors to new treatments
01.12.2016 | IDIBELL-Bellvitge Biomedical Research Institute

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>