Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

La Jolla Institute identifies new therapeutic target for asthma, COPD and other lung disorders

18.04.2011
Finding marks scientist's second major discovery with therapeutic potential for asthma

Michael Croft, Ph.D., a researcher at the La Jolla Institute for Allergy & Immunology, has discovered a molecule's previously unknown role as a major trigger for airway remodeling, which impairs lung function, making the molecule a promising therapeutic target for chronic asthma, chronic obstructive pulmonary disease (COPD) and several other lung conditions. A scientific paper on Dr. Croft's finding was published online today in the prestigious journal, Nature Medicine.

The finding marks Dr. Croft's second major discovery with therapeutic potential for asthma. His previous finding, of a novel molecular mechanism driving lung inflammation, is the basis for a potential asthma treatment now in Phase II human clinical trials.

"Dr. Croft's continued efforts to uncover the cellular pathways influencing asthma and other lung disorders have produced remarkable results," said Mitchell Kronenberg, Ph.D., La Jolla Institute president and chief scientific officer. "He is a researcher of the highest caliber and I believe his discoveries will someday improve the lives of millions of people around the world."

In his Nature Medicine paper entitled, "The tumor necrosis factor family member LIGHT is a target for asthmatic airway remodeling," Dr. Croft showed that blocking LIGHT's interactions with its two receptors significantly inhibited the process of airway remodeling in mouse models of chronic asthma. Airway remodeling refers to inflammation-fueled structural changes in the lungs, including fibrosis, which can occur over time and result in declining lung function that strongly contributes to conditions such as COPD, chronic asthma, and several other respiratory disorders.

Asthma affects more than 20 million Americans, including nine million children, and is the third-ranking cause of hospitalization among U.S. children under age 15. According to federal officials, asthma results in $14 billion annually in U.S. health care costs. COPD is one of the most common lung diseases and comes in two main forms, chronic bronchitis and emphysema. More than 12 million Americans have been diagnosed with COPD, which is a major cause of disability and the fourth leading cause of death in the United States.

Current therapies for asthma and COPD primarily include corticosteroids, bronchodilators, and leukotriene antagonists, but these are thought to have little impact, if any, on airway remodeling, said Dr. Croft.

Dr. Croft said emerging data on the role of the tumor necrosis factor (TNF) super family of molecules in fueling inflammatory diseases, including his own finding on OX40 Ligand and its receptor's action in triggering inflammation in asthma, prompted him to take a close look at fellow TNF molecule, LIGHT. "We hypothesized that LIGHT might be involved in driving aspects of lung inflammation or have a role in lung dysfunction that was different than our previous findings on OX40L," he said. "As we were undertaking our studies, a report found that increased sputum LIGHT levels in people with asthma correlated with decreased lung function, which was in line with our thinking."

Using two mouse models of chronic asthma and a therapeutic blocking strategy, Dr. Croft said he and his team "demonstrated a direct role for LIGHT in promoting and controlling the extent of remodeling in the lung."

In a related finding, published March 14 in the Journal of Experimental Medicine, Dr. Croft also showed a connection between LIGHT and T cell-fueled inflammation that contributes to other aspects of asthmatic disease. "We showed that blocking LIGHT binding to one of its receptors, named the herpesvirus entry mediator, reduced the ability of T lymphocytes, induced with a model allergen, to survive long-term. This strongly curtailed lung inflammation associated with asthma when the allergen was subsequently inhaled," he said. The findings were detailed in a scientific paper entitled, "Herpesvirus entry mediator (TNFRSF14) regulates the persistence of T helper memory cell populations."

Dr. Croft said he is excited about his findings on LIGHT and its impact on both airway remodeling and inflammation in asthma. "Identifying these molecules (LIGHT and its receptors) as regulators of processes associated with several lung diseases may be an important advantage in efforts to develop new and better therapies," he said.

LIGHT was initially discovered in 1998 by former La Jolla Institute scientist Carl Ware, Ph.D. The TNF family of molecules has proven to be important players in inflammation-driven autoimmune diseases and is a particular focus of the La Jolla Institute.

"The fact that LIGHT appears to be important in Crohn's disease and colitis, and now may have an indication in asthma, is a continued demonstration of the TNF family's critical role in inflammatory diseases," said Dr. Kronenberg. "We are thrilled that both of these findings originated from our Institute. It is a reflection that our Institute is one of the world's leaders in TNF research, which is a hotbed of therapeutic potential for autoimmune diseases."

About La Jolla Institute

Founded in 1988, the La Jolla Institute for Allergy & Immunology is a biomedical research nonprofit focused on improving human health through increased understanding of the immune system. Its scientists carry out research seeking new knowledge leading to the prevention of disease through vaccines and the treatment and cure of infectious diseases, cancer and autoimmune diseases such as rheumatoid arthritis, type 1 (juvenile) diabetes, Crohn's disease and asthma. La Jolla Institute's research staff includes more than 100 Ph.D.s and M.D.s. For more information, go to www.liai.org

Bonnie Ward | EurekAlert!
Further information:
http://www.liai.org

More articles from Health and Medicine:

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Better equipped in the fight against lung cancer
16.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>