Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Knee injuries in women linked to motion, nervous system differences

18.04.2012
Women are more prone to knee injuries than men, and the findings of a new study suggest this may involve more than just differences in muscular and skeletal structure – it shows that males and females also differ in the way they transmit the nerve impulses that control muscle force.
Scientists at Oregon State University found that men control nerve impulses similar to individuals trained for explosive muscle usage – like those of a sprinter – while the nerve impulses of women are more similar to those of an endurance-trained athlete, like a distance runner.

In particular, the research may help to explain why women tend to suffer ruptures more often than men in the anterior cruciate ligament of their knees during non-contact activities. These ACL injuries are fairly common, can be debilitating, and even when repaired can lead to osteoarthritis later in life.

More study of these differences in nervous system processing may lead to improved types of training that individuals could use to help address this issue, scientists said.

“It’s clear that women move differently than men, but it’s not as obvious why that is,” said Sam Johnson, a clinical assistant professor in the OSU School of Biological and Population Health Sciences.

“There are some muscular and skeletal differences between men and women, but that doesn’t explain differences in injury rates as much as you might think,” Johnson said. “No one has really studied the role of the nervous system the way we have in explaining these differences, specifically the way sensory information is processed and integrated with motor function in the spinal cord.”

In this study, just published in the European Journal of Applied Physiology, the scientists found that most aspects of spinal motor control and rapid activation of muscles were similar in 17 men and 17 women that were examined – with one exception. Men had a higher level of “recurrent inhibition,” which is a process in the spinal cord that helps select the appropriate muscle response.

Even a process as simple as walking is surprisingly complicated, as people process large amounts of information and use varying forces to move around obstacles, change direction or simply climb up a step. And when you slip on an icy patch, the need for extremely rapid and accurate muscle response might be all that stands between you and a broken hip.

For some reason, women tend to have knee motions that make them more susceptible to injury. Among other things, when landing from a jump their knees tend to collapse inward more than that of most men. They suffer significantly more ACL injuries during physical activity.

“We’re finding differences in nervous system processing that we believe are related to this,” Johnson said. “The causes for those differences are unclear, but it may be due either to a biological difference, such as hormones, or a cultural difference such as different exercise and training patterns.”

This research was supported by the National Athletic Trainers’ Association Research and Education Foundation. Researchers at Marquette University collaborated on the work.

While researchers continue to study what might help address this, Johnson said it’s already possible for women to be more aware of these common differences and do exercises that should reduce problems.

Many ACL injury prevention programs incorporate strength, balance, flexibility, and jump training. However, based on these and other findings, women – especially athletes – should consider training with motions more similar to those of their sport, such as squatting, lunging, jumping or cutting side-to-side.

Use of heavy weights may not really be necessary, Johnson said, so much as mimicking the motions that often cause this injury.

The study this story is based on is available online: http://bit.ly/Ius3gv
About the OSU College of Public Health and Human Sciences: The College creates connections in teaching, research and community outreach while advancing knowledge, policies and practices that improve population health in communities across Oregon and beyond.

Sam Johnson | EurekAlert!
Further information:
http://www.oregonstate.edu

Further reports about: ACL Johnson OSU Oregon Shattered Knee health services nerve impulses nervous system spinal cord

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>