Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Knee injuries in women linked to motion, nervous system differences

18.04.2012
Women are more prone to knee injuries than men, and the findings of a new study suggest this may involve more than just differences in muscular and skeletal structure – it shows that males and females also differ in the way they transmit the nerve impulses that control muscle force.
Scientists at Oregon State University found that men control nerve impulses similar to individuals trained for explosive muscle usage – like those of a sprinter – while the nerve impulses of women are more similar to those of an endurance-trained athlete, like a distance runner.

In particular, the research may help to explain why women tend to suffer ruptures more often than men in the anterior cruciate ligament of their knees during non-contact activities. These ACL injuries are fairly common, can be debilitating, and even when repaired can lead to osteoarthritis later in life.

More study of these differences in nervous system processing may lead to improved types of training that individuals could use to help address this issue, scientists said.

“It’s clear that women move differently than men, but it’s not as obvious why that is,” said Sam Johnson, a clinical assistant professor in the OSU School of Biological and Population Health Sciences.

“There are some muscular and skeletal differences between men and women, but that doesn’t explain differences in injury rates as much as you might think,” Johnson said. “No one has really studied the role of the nervous system the way we have in explaining these differences, specifically the way sensory information is processed and integrated with motor function in the spinal cord.”

In this study, just published in the European Journal of Applied Physiology, the scientists found that most aspects of spinal motor control and rapid activation of muscles were similar in 17 men and 17 women that were examined – with one exception. Men had a higher level of “recurrent inhibition,” which is a process in the spinal cord that helps select the appropriate muscle response.

Even a process as simple as walking is surprisingly complicated, as people process large amounts of information and use varying forces to move around obstacles, change direction or simply climb up a step. And when you slip on an icy patch, the need for extremely rapid and accurate muscle response might be all that stands between you and a broken hip.

For some reason, women tend to have knee motions that make them more susceptible to injury. Among other things, when landing from a jump their knees tend to collapse inward more than that of most men. They suffer significantly more ACL injuries during physical activity.

“We’re finding differences in nervous system processing that we believe are related to this,” Johnson said. “The causes for those differences are unclear, but it may be due either to a biological difference, such as hormones, or a cultural difference such as different exercise and training patterns.”

This research was supported by the National Athletic Trainers’ Association Research and Education Foundation. Researchers at Marquette University collaborated on the work.

While researchers continue to study what might help address this, Johnson said it’s already possible for women to be more aware of these common differences and do exercises that should reduce problems.

Many ACL injury prevention programs incorporate strength, balance, flexibility, and jump training. However, based on these and other findings, women – especially athletes – should consider training with motions more similar to those of their sport, such as squatting, lunging, jumping or cutting side-to-side.

Use of heavy weights may not really be necessary, Johnson said, so much as mimicking the motions that often cause this injury.

The study this story is based on is available online: http://bit.ly/Ius3gv
About the OSU College of Public Health and Human Sciences: The College creates connections in teaching, research and community outreach while advancing knowledge, policies and practices that improve population health in communities across Oregon and beyond.

Sam Johnson | EurekAlert!
Further information:
http://www.oregonstate.edu

Further reports about: ACL Johnson OSU Oregon Shattered Knee health services nerve impulses nervous system spinal cord

More articles from Health and Medicine:

nachricht Routing gene therapy directly into the brain
07.12.2017 | Boston Children's Hospital

nachricht New Hope for Cancer Therapies: Targeted Monitoring may help Improve Tumor Treatment
01.12.2017 | Berliner Institut für Gesundheitsforschung / Berlin Institute of Health (BIH)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>