Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Knee cartilage repair technique shows improvement in patient outcomes and regeneration

15.07.2013
A natural tissue graft can spur regeneration of cartilage and improve symptoms in patients who have cartilage damage in their knee, according to a study by researchers from Hospital for Special Surgery. The new research, the first case-series evaluation of De Novo NT Natural Tissue Graft, will be presented at the annual meeting of the American Orthopaedic Society for Sports Medicine (AOSSM), to be held July 11-14, in Chicago.

"The results at this time are encouraging," said lead author of the study Scott Rodeo, M.D., orthopedic surgeon and co-chief of the sports medicine and shoulder service at Hospital for Special Surgery, in New York City. "De Novo NT compares favorably to our existing techniques, given that it is easy to do and involves a one step procedure. We are cautiously optimistic. It clearly regenerates tissue, but we need further long-term followup."

The smooth, white tissue covering the ends of bones where they come together to form joints is called articular cartilage. In the knee, this cartilage can be damaged by a traumatic sports accident, a bad fall, or normal wear and tear in active individuals. Articular cartilage lesions can cause pain and lead to osteoarthritis. "Articular cartilage injuries to the knee are fairly common, and they are hard to treat," said Dr. Rodeo. "Cartilage has no capacity to heal spontaneously, and cartilage lesions over time can get progressively larger."

There are no perfect options for treating articular cartilage lesions, but current therapeutic approaches include surgeries such as microfracture, a procedure that involves drilling small holes in bones to induce bleeding and spark healing. Surgeons can also use donor tissue that can be sized and fitted to the defect, but donor tissue is in limited supply and reestablishing congruity of the cartilage surface using this method can be difficult.

De Novo NT is an FDA approved cartilage repair technique. The product is made out of minced cartilage from organ donors under the age of 13. Unlike cartilage in adults, this young tissue has a high proliferative capacity. Cells from the transplanted cartilage escape or migrate into surrounding area tissues, multiply, and form a new cartilage tissue matrix that integrates with the surrounding host tissue. This technique eliminates the need for harvesting and requires less suturing because the product uses a fibrin sealant to secure the particulated tissue pieces into the lesion. Fibrin is an insoluble "sticky" protein involved in the clotting of blood.

"The small pieces of juvenile cartilage are less than a millimeter in size, and what happens is the cells can migrate out of these small pieces of cartilage," said Dr. Rodeo. "We are trying to take advantage of the high proliferative capacity of the tissue."

Until now, only a few case-reports of this product have been published. The tissue graft falls into a category of products that does not have to undergo the rigorous clinical trial process through which drugs, for example, are approved.

In the study presented at the AOSSM meeting, clinicians used De Novo NT to treat 17 patients who had cartilage damage on the kneecap (specifically focal patellofemoral cartilage lesions). The average lesion size was 203 millimeters. Clinicians compared symptom assessment survey data and MRI images at baseline and at two years of followup and identified improvements in all patients.

At two years of followup, patients had roughly a 30% improvement in scores from the international knee documentation committee (IKDC) health evaluation form, a 20% improvement in the IKDC subjective form, and a 25% Knee Outcome Survey form (53.5 vs. 75.5). These surveys gauge the degree of symptoms, such as knee swelling and pain, that a patient is experiencing and how much knee impairment impacts overall well-being, activities of daily living, work, and athletic and social activities. "The improvements are clinically significant, as well as statistically significant," said Dr. Rodeo.

The patients also showed improvements on MRI scans, with traditional MRI technology as well as quantitative T2 mapping MRI. T2 mapping, which evaluates biochemical changes in the cartilage, was developed by HSS investigators including Hollis Potter, M.D., chief of the division of magnetic resonance imaging, director of research in the Department of Radiology and Imaging at HSS. T2 mapping in 6 patients showed prolongation of quantitative T2 values in both the superficial (58.6 vs. 37.4; P=0.02) and deep components of the repair tissue (47.18 vs. 28.3; P=0.005), demonstrating that the tissue still differs from normal cartilage.

"Quantitative MRI, when combined with morphologic assessment, allows us to understand the natural history of repair techniques," said Dr. Potter, who was also involved with the study presented at AOSSM. "We gain knowledge about the biology of integration with the host tissue, as well as the repair tissue biochemistry (collagen orientation), all by a noninvasive imaging technique."

Adverse events seen in patients, such as swelling and inflammation, were typical postoperative complications seen after other cartilage repair strategies.

"Using symptom outcome scales, we have demonstrated symptomatic improvement, and we have used MRI to carefully evaluate the regenerative tissue," said Dr. Rodeo, who pointed out longer followup is needed. "We need to perform MRIs on a yearly basis to follow the maturation of the tissue."

De Novo NT Natural Tissue Graft is manufactured by Zimmer Incorporated.

Other researchers from Hospital for Special Surgery involved in the study are Cecilia Pascual-Garrido, M.D., Stephanie L. Gold, M.S., Jaclyn Snikeris B.S., Alissa Burge, M.D., Joseph Nguyen, MPH, Russell F. Warren, M.D., and Riley J. Williams, M.D.

About Hospital for Special Surgery

Founded in 1863, Hospital for Special Surgery (HSS) is a world leader in orthopedics, rheumatology and rehabilitation. HSS is nationally ranked No. 1 in orthopedics, No. 3 in rheumatology, No. 10 in neurology and No. 5 in geriatrics by U.S. News & World Report (2012-13), and is the first hospital in New York State to receive Magnet Recognition for Excellence in Nursing Service from the American Nurses Credentialing Center three consecutive times. HSS has one of the lowest infection rates in the country. From 2007 to 2011, HSS has been a recipient of the HealthGrades Joint Replacement Excellence Award. HSS is a member of the NewYork-Presbyterian Healthcare System and an affiliate of Weill Cornell Medical College and as such all Hospital for Special Surgery medical staff are faculty of Weill Cornell. The hospital's research division is internationally recognized as a leader in the investigation of musculoskeletal and autoimmune diseases. Hospital for Special Surgery is located in New York City and online at http://www.hss.edu.

For more information contact:

Phyllis Fisher
212-606-1197
FisherP@hss.edu
phyllis.fisher@gmail.com
Tracy Hickenbottom
212-606-1197
HickenbottomT@hss.edu

Phyllis Fisher | EurekAlert!
Further information:
http://www.hss.edu

More articles from Health and Medicine:

nachricht Cholesterol-lowering drugs may fight infectious disease
22.08.2017 | Duke University

nachricht Once invincible superbug squashed by 'superteam' of antibiotics
22.08.2017 | University at Buffalo

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>