Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New way to kill lymphoma without chemotherapy

22.01.2013
Golden nanoparticle starves cancer cell to death

How do you annihilate lymphoma without using any drugs?

Starve it to death by depriving it of what appears to be a favorite food: HDL cholesterol.

Northwestern Medicine® researchers discovered this with a new nanoparticle that acts like a secret double agent. It appears to the cancerous lymphoma cell like a preferred meal -- natural HDL. But when the particle engages the cell, it actually plugs it up and blocks cholesterol from entering. Deprived of an essential nutrient, the cell eventually dies.

A new study by C. Shad Thaxton, M.D., and Leo I. Gordon, M.D. shows that synthetic HDL nanoparticles killed B-cell lymphoma, the most common form of the disease, in cultured human cells, and inhibited human B-cell lymphoma tumor growth in mice.

The paper will be published Jan. 21 in the journal Proceedings of the National Academy of Sciences.

"This has the potential to eventually become a nontoxic treatment for B-cell lymphoma which does not involve chemotherapy," said Gordon, a co-corresponding author with Thaxton on the paper. "It's an exciting preliminary finding."

Gordon is a professor of medicine in hematology/oncology and Thaxton is an assistant professor of urology, both at Northwestern University Feinberg School of Medicine.

Gordon also is co-director of the hematologic malignancy program at the Robert H. Lurie Comprehensive Cancer Center of Northwestern University and a physician at Northwestern Memorial Hospital. Thaxton is also a member of the Lurie Cancer Center.

Lymphoma Gobbles HDL Cholesterol

Recent studies have shown that B-cell lymphoma is dependent on the uptake of natural HDL -- short for high-density lipoprotein -- from which it derives fat content, such as cholesterol.

The nanoparticle -- originally developed by Thaxton as a possible therapy for heart disease -- closely mimics the size, shape and surface chemistry of natural HDL particles. But it has one key difference: a five nanometer gold particle at its core. Thus, when the nanoparticle is incubated with human B-cell lymphoma cells or used to treat a mouse with the human tumor, it socks lymphoma with a double whammy. After it attaches to the lymphoma cell, the gold particle's spongy surface sucks out its cholesterol while the gold core prevents the cell from absorbing more cholesterol typically carried in the core of natural HDL particles.

The lymphoma research showed Thaxton that the HDL nanoparticle had more than one trick up its golden sleeve.

"At first I was heavily focused on developing nanoparticles that could remove cholesterol from cells, especially those involved in heart disease," Thaxton said. "The lymphoma work has broadened this focus to how the HDL nanoparticles impact both the removal and uptake of cholesterol by cells. We discovered the particles are multi-taskers."

The Northwestern study also showed that natural HDL did not kill the cells or inhibit tumor growth. The nanoparticle was essential to starve the lymphoma cell.

Detour From Heart Disease to Cancer Killer

After developing the HDL nanoparticle, Thaxton gave a lecture in 2010 to Feinberg faculty. Gordon was in the audience. He knew that patients with advanced forms of B-cell lymphoma sometimes have dropping levels of cholesterol. A long-time lymphoma researcher and oncologist, Gordon was looking for new methods to deliver drugs to patients. He contacted Thaxton and they began to collaborate.

They tested the HDL nanoparticle alone and the HDL nanoparticle transporting cancer drugs. Surprisingly, the nanoparticle without drugs was just as effective at killing the B-cell lymphoma cells.

"We thought, 'That's odd. Why don't we need the drug?'" Gordon recalled.

That's when the scientists began delving into the mechanism by which the HDL nanoparticles were sticking to the HDL receptors on the lymphoma cell and manipulating cholesterol transport. In addition, patient samples analyzed by collaborators at Duke University for the study showed that lymphoma cells in patients had an overproduction of these HDL receptors compared to normal lymphocytes.

B-cell Lymphoma Most Common Lymphoma

The National Cancer Institutes reports that in 2012 there were about 70,000 new cases of non-Hodgkin lymphoma in the U.S. with nearly 19,000 deaths. About 90 percent of those new cases were B-cell lymphoma. Non-Hodgkin lymphoma is a cancer that starts in cells called lymphocytes, which are part of the body's immune system.

Why a Heart of Gold?

"Gold has a good track record of being compatible with biologic systems," Thaxton said.

Thaxton and Gordon are encouraged by their early data showing that the HDL nanoparticles do not appear toxic to other human cells normally targeted by HDLs, normal human lymphocytes or to mice. Also, because gold nanoparticles can be made in a discreet size and shape, they are excellent scaffolds for creating synthetic HDLs that closely mimic those found in nature.

"Like every new drug candidate, the HDL nanoparticle will need to undergo further testing," Thaxton noted.

The co-first authors of the paper are Shuo Yang and Marina Damiano. Shuo is a research associate in medicine in Gordon's laboratory in the division of hematology/oncology at the Feinberg School and Marina is a graduate student in the department of chemistry at Weinberg College of Arts and Sciences.

The research was supported by The Howard Hughes Medical Institute and the Schwartz Foundation. Thaxton is a co-founder of AuraSense, LLC a start-up biotech company that holds the license to the HDL nanoparticles used in the study.

NORTHWESTERN NEWS: www.northwestern.edu/newscenter/.

Marla Paul | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Health and Medicine:

nachricht Penn studies find promise for innovations in liquid biopsies
30.03.2017 | University of Pennsylvania School of Medicine

nachricht 'On-off switch' brings researchers a step closer to potential HIV vaccine
30.03.2017 | University of Nebraska-Lincoln

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>