Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Kidney stone mystery solved

19.04.2012
Kidney stones strike an estimated 1 million Americans each year, and those who have experienced the excruciating pain say it is among the worst known to man (or woman).

Now, new research by scientists at Washington University School of Medicine in St. Louis provides evidence to explain why some people are more prone to develop the condition than others. Their discovery opens the door to finding effective drug treatments and a test that could assess a person's risk of kidney stones.


The CT image reveals the presence of kidney stones. New research at Washington University School of Medicine in St. Louis provides evidence to explain why some people are more prone to the condition than others. Credit: Alana Desai, MD, Washington University in St. Louis

"Now, we finally have a more complete picture detailing why some people develop kidney stones and others do not," says senior author Jianghui Hou, PhD, assistant professor of medicine. "With this information, we can begin to think about better treatments and ways to determine a person's risk of the condition, which typically increases with age."

The research, in mice, is now available online in the EMBO Journal, published by the European Molecular Biology Organization.

Because kidneys function the same way in mice as in humans, the new findings can help scientists understand the root causes of kidney stones in patients. The mouse model used in the study can also serve as a platform for the preclinical testing of novel treatments for the condition, the researchers say.

Most kidney stones form when the urine becomes too concentrated, allowing minerals like calcium to crystallize and stick together. Diet plays a role in the condition — not drinking enough water or eating too much salt (which binds to calcium) also increases the risk of stones.

But genes are partly to blame. A common genetic variation in a gene called claudin-14 recently has been linked to a substantial increase in risk — roughly 65 percent — of getting kidney stones. In the new study, the researchers have shown how alterations in the gene's activity influence the development of stones.

Typically, the claudin-14 gene is not active in the kidney. The new research shows that its expression is dampened by two snippets of RNA, a sister molecule of DNA, that essentially silence the gene.

When claudin-14 is idled, the kidney's filtering system works like it's supposed to. Essential minerals in the blood like calcium and magnesium pass through the kidneys and are reabsorbed back into the blood, where they are transported to cells to carry out basic functions of life.

But when people eat a diet high in calcium or salt and don't drink enough water, the small RNA molecules release their hold on claudin 14. An increase in the gene's activity prevents calcium from re-entering the blood, the study shows.

Hou and his team have found that claudin-14 blocks calcium from entering passageways called tight junctions in cells that line the kidney and separate blood from urine.

Without a way back to the bloodstream, excess calcium goes into the urine. Too much calcium in the urine can lead to stones in the kidneys or bladder. Intense pain develops when a large stone gets stuck in the bladder, ureter or urethra and blocks the flow of urine.

Hou's research supports the theory that people with a common variation in claudin-14 lose the ability to regulate the gene's activity, increasing the risk of kidney stones.

He is optimistic, however, that drugs could be developed to target the short stretches of RNA that are intimately linked to claudin 14. Drugs that mimic these so-called microRNAs could keep the activity of claudin-14 in check and reduce the likelihood that stones would form.

Also, it may one day be possible to develop a diagnostic test to measure levels of the claudin-14 protein excreted in urine. Elevated levels would indicate an increased risk of stones, and people could take steps to prevent stones by modifying their diet.

"Many genes likely play a role in the formation of kidney stones," Hou says. "But this study gives us a better idea of the way one of the major players work. Now that we understand the physiology of the condition, we can start to think about better treatments or even ways to prevent stones from developing in the first place."

The research was funded, in part, by the National Institutes of Health (NIH) and the American Heart Association.

Hou is working with Washington University's Office of Technology Management on an invention related to work described in the paper.

Gong Y, Renigunta V, Himmerkus N, Zhang J, Renigunta A, Bleich M, Hou J. Claudin-14 regulates renal CA++ transport in response to CaSR signaling via a novel microRNA pathway. The EMBO Journal. Advance online publication Feb. 28, 2012.

Washington University School of Medicine's 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children's hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked sixth in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children's hospitals, the School of Medicine is linked to BJC HealthCare.

Caroline Arbanas | EurekAlert!
Further information:
http://www.wustl.edu

Further reports about: EMBO Medicine RNA RNA molecule kidney disease kidney stones

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>