Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Kidney dopamine regulates blood pressure, life span

The neurotransmitter dopamine is best known for its roles in the brain – in signaling pathways that control movement, motivation, reward, learning and memory.

Now, Vanderbilt University Medical Center investigators have demonstrated that dopamine produced outside the brain – in the kidneys – is important for renal function, blood pressure regulation and life span. Their studies, published in the July Journal of Clinical Investigation, suggest that the kidney-specific dopamine system may be a therapeutic target for treating hypertension and kidney diseases such as diabetic nephropathy.

Previous studies had suggested a role for dopamine in regulating kidney function and total body fluid volume, "but how that mechanism works was not clear," said Raymond Harris, M.D., chief of the Division of Nephrology and Hypertension at Vanderbilt.

To explore dopamine's role in the kidney, Harris and Ming-Zhi Zhang, M.D., assistant professor of Medicine at Vanderbilt, eliminated kidney-specific dopamine production in mice (by knocking out a dopamine-generating enzyme only in the kidney) and studied the outcome.

They found that mice lacking kidney dopamine had high blood pressure at baseline and became more hypertensive when they consumed a high-salt diet, suggesting they may be a good model of salt-sensitive (essential) hypertension, Harris said. Alterations in the kidney dopamine system may predispose individuals to hypertension, he noted.

The investigators also showed that elimination of kidney dopamine increased renin production, which activates the angiotensin II system to increase salt and water reabsorption – and produce hypertension.

"These animals retain salt and water when they don't have sufficient dopamine production in the kidney," Harris said. "Our studies highlight this whole other hormonal system that appears to balance or put the brakes on the renin-angiotensin system."

Currently, the renin-angiotensin system is the major target for treating chronic kidney diseases. Discovering another target – the kidney dopamine system – is exciting, the researchers said. They are exploring whether specific drugs that enhance the kidney dopamine system are effective in blocking hypertension and treating progressive kidney diseases.

The investigators predicted changes in kidney function in the mouse model, but they were "very surprised" to discover that the modified mice only lived about half as long as normal mice (15 months versus 30 months). They found increases in stress-related proteins in the kidney, heart and vasculature, suggesting that elimination of kidney dopamine causes systemic effects, Harris said.

"This kidney-specific dopamine system is not only important for kidney function and blood pressure regulation, but also for the overall health of the animal," Harris said. "If the dopamine system in the kidney is altered, the animals have a markedly shortened life span."

The research was supported by the National Institutes of Health, the Vanderbilt O'Brien Center and by the Veterans Administration. Harris is the Ann and Roscoe R. Robinson Professor of Nephrology.

Leigh MacMillan | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>