Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Kidney damage and high blood pressure

23.09.2011
Research suggests that faulty filtration allows detrimental enzymes to wreak havoc on fluid balance

The kidney performs several vital functions. It filters blood, removes waste products from the body, balances the body's fluids, and releases hormones that regulate blood pressure.

A number of diseases and conditions can damage the kidney's filtration apparatus, such as diabetes and immune disorders. This damage leads to a condition called nephrotic syndrome, which is characterized by protein in the urine, high cholesterol and triglycerides, and swelling (edema). People with nephrotic syndrome retain salt and water in their bodies and develop swelling and high blood pressure as a result.

Scientists have now begun to understand kidney damage on a cellular level and how the activity of certain molecules in damaged kidneys contributes to salt and water retention in nephrotic syndrome. Several new insights in this area of research will be presented at the7th International Symposium on Aldosterone and the ENaC/Degenerin Family of Ion Channels, being held September 18-22 in Pacific Grove, Calif. The meeting is sponsored by the American Physiological Society.

Faulty Filtration

The kidneys are marvels of filtration, processing roughly 150 to 200 quarts of blood each day through tiny structures called nephrons. There are about 1 million nephrons per kidney, and each nephron consists of a filtering unit of blood vessels called a glomerulus, which is attached to a tubule. Filtered blood enters the tubule, where various substances are either added to or removed from the filtrate as necessary, and most of the filtered sodium and water is removed. The filtrate that exits the tubule is excreted as urine.

In nephrotic syndrome, a damaged filtration barrier allows substances that are not normally filtered to appear in the filtrate. One of these substances is the protein plasminogen, which is converted in kidney tubules to the protease plasmin. In their research, Thomas R. Kleyman, Professor of Medicine and of Cell biology and Physiology at the University of Pittsburgh School of Medicine and the Symposium's co-organizer, and Ole Skøtt, Professor of Physiology and Pharmacology and Dean at the University of Southern Denmark in Odense, independently found that plasmin plays a role in activating the epithelial sodium channel (ENaC) on cells in the nephron. ENaC is a protein embedded in cell membranes that facilitates the absorption of filtered sodium from tubules. When ENaC is becomes overactive, excessive absorption of filtered sodium may lead to sodium and water retention.

According to Dr. Kleyman, these findings provide an explanation of how damage to the glomeruli in the kidney's nephrons leads to edema and high blood pressure. Dr. Kleyman explains: "When plasminogen is cleaved, it can act on several targets. One of those targets is ENaC. Another is the protein prostasin, which, once cleaved, will activate ENaC, as well."

Dr. Kleyman noted the implications these findings have for treating edema and high blood pressure in patients suffering from nephrotic syndrome. "This is important because if plasmin activates ENaC, it suggests that targeting ENaC in the kidneys with ENaC inhibitors may be a treatment option."

Presentations

Dr. Skøtt will discuss the Danish team's research in his presentation, "Plasmin, ENaC, and Nephrotic Syndrome," on Thursday, Sept. 22. Ossama B. Kashlan, Research Assistant Professor of Medicine in the Renal-Electrolyte Division at the University of Pittsburgh, will discuss the molecular mechanisms by which proteases activate ENaC in his presentation, "Conformational Trapping of the Closed State of ENaC" on Monday, Sept. 19.

About the Conference

The 7th International Symposium on Aldosterone and the ENaC/Degenerin Family of Ion Channels explores the relationship between fluid regulation and hypertension, the cardiovascular system and other organ systems. The American Physiological Society is sponsoring the conference being held September 18-22, 2011 in Pacific Grove, CA. Additional information can be found online at http://www.the-aps.org/press/releases/11/24.htm.

NOTE TO EDITORS: For an abstract of any of the above presentations, or to schedule an interview with one of the presenters, please contact Donna Krupa at 301.634.7209, dkrupa@the-aps.org.

Physiology is the study of how molecules, cells, tissues and organs function to create health or disease. The American Physiological Society has been an integral part of the discovery process since it was established in 1887. To keep up with the science, follow @Phyziochick on Twitter.

Donna Krupa | EurekAlert!
Further information:
http://www.the-aps.org

More articles from Health and Medicine:

nachricht World first: Massive thrombosis removed during early pregnancy
20.07.2017 | Universitätsspital Bern

nachricht Therapy of preterm birth in sight?
19.07.2017 | Universitätsspital Bern

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>