Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Kidney cancer progression linked to shifts in tumor metabolism

25.06.2013
Scientists with The Cancer Genome Atlas identify genomic alterations tied to tumor aggressiveness

Investigators in The Cancer Genome Atlas (TCGA) Research Network have uncovered a connection between how tumor cells use energy from metabolic processes and the aggressiveness of the most common form of kidney cancer, clear cell renal cell carcinoma (ccRCC). Their findings demonstrate that normal metabolism is altered in ccRCC tumor cells, and involves a shift from using one metabolic pathway to another. This change – termed a metabolic shift – correlates with tumor stage and severity in some cases.


Drawing of kidneys with image on the left depicting a cross section of one kidney

The scientists also found mutations in a pathway that may cause increased aggressiveness in this cancer. Taken together, the findings may offer new insight into underlying disease mechanisms and potential treatments as well as an understanding of how some cancer cells can shift from using normal metabolic pathways to alternative pathways, thereby providing a growth advantage to tumor cells. In general, changes in metabolic enzymes that promote growth of the tumor are associated with worse patient outcomes in this disease. This latest TCGA research supports previous evidence of a metabolic shift in a different subtype of kidney cancer.

The scientists used data generated by TCGA, a collaborative effort funded by the National Cancer Institute (NCI) and the National Human Genome Research Institute (NHGRI), both parts of the National Institutes of Health. The results of this study were published online June 23, 2013, in Nature.

“Because of TCGA's comprehensive characterization of kidney tumors and correlating that with patient survival data, researchers now can begin applying this knowledge to validating prognostic biomarkers and identifying new therapeutic strategies for this disease,” said NIH Director, Francis S. Collins, M.D., Ph.D.

In the study, scientists examined nearly 450 ccRCC tumors and matched each with a normal sample from the same patient. When they looked at the amounts of specific proteins expressed in cancer cells, they found that low levels of one protein essential to cell metabolism (AMPK) and high levels of another (acetyl-CoA carboxylase) were associated with worse patient outcomes.

“Earlier findings from the characterization of other types of cancers have given us important clues as to how to design better therapies for these cancers,” said NCI Director Harold Varmus, M.D. “The new results from the TCGA analysis of clear cell renal cell carcinomas provide an explanation for how mutations in certain genes can alter chromosome chemistry to produce changes in enzyme levels that affect cell metabolism in ways correlated with clinical outcomes. These findings will stimulate some novel ideas about therapies for other lethal cancers.”

In addition to the connection between metabolic shift and tumor aggressiveness, TCGA Research Network scientists discovered that, in some cases, the metabolic shift may be caused by changes in the PI3K cellular pathway, which helps regulate cell metabolism. The investigators observed a number of changes in P13K pathway genes and its regulators in tumor cells, including DNA mutations in protein-coding areas, as well as other changes affecting gene expression. They found such alterations in the PI3K pathway — or its partner pathways, AKT and mTOR — in 29 percent of tumor samples. AKT and mTOR also are essential for regulating cellular metabolism.

The effects of these changes show the importance of the PI3K/AKT/mTOR pathways. For example, researchers found a decrease in factors that activate tumor suppressor genes – the genes that produce proteins aimed at blocking tumor development. At the same time, factors that turned on genes that inhibit the PI3K pathway were blocked. Both of these changes promote activity in the PI3K/AKT/mTOR pathways. The results suggest the pathways’ potential as therapeutic targets with inhibitor drugs.

“These findings illustrate how large, multi-dimensional datasets obtained from the rigorous analyses of hundreds of tumors can be mined to uncover new insights into cancer biology,” said NHGRI Director Eric Green, M.D., Ph.D. “By creating these types of datasets, TCGA has advanced our fundamental understanding of this type of cancer.”

W. Marston Linehan, M.D., chief of the NCI Urologic Oncology Branch and one of the study’s leaders, sees several implications from the results. “The finding of a metabolic shift in the aggressive tumors could provide the foundation for the development of a number of novel approaches to therapy for patients with advanced kidney cancer,” said Linehan.

New therapies are especially important since advanced kidney cancer is often resistant to chemotherapy. TCGA data offer insights into various global processes occurring in kidney cancer and can show how different tumor pathways intersect.

“The molecular analysis of this disease impacts understanding of all cancers through furthering insights into the role of metabolic perturbation in malignancy,” said Richard A. Gibbs, Ph.D., another lead investigator in the project and director of the Human Genome Sequencing Center at Baylor College of Medicine, Houston.

NCI estimates that nearly 65,000 people in this country will be diagnosed with ccRCC in 2013, and more than 13,000 people will die from the disease. More than 50 percent of patients with early stage renal cell cancer are successfully treated with current therapies. However, nearly all patients with the most severe stage of this cancer have a poor prognosis.

To date, the TCGA Research Network has generated data and published analyses on glioblastoma multiforme, ovarian serous adenocarcinoma, colorectal adenocarcinoma, lung squamous cell carcinoma, invasive breast cancer, acute myeloid leukemia, and endometrial cancer. TCGA-generated data are freely available at the TCGA Data Portal and CGHub.

This work was supported by the following grants: 5U24CA143799, 5U24CA143835, 5U24CA143840, 5U24CA143843, 5U24CA143845, 5U24CA143848, 5U24CA143858, 5U24CA143866, 5U24CA143867, 5U24CA143882, 5U24CA143883, 5U24CA144025, U54HG003067, U54HG003079, and U54HG003273, P30CA16672.

Reference: The Cancer Genome Atlas Network. Integrative analysis of genomic and molecular alterations in clear cell renal cell carcinoma. Nature. Online June 23, 2013. In print July 4, 2013. doi:10.1038/nature12222.

The TCGA Research Network consists of more than 150 researchers at dozens of institutions across the nation. A list of participants is available at http://cancergenome.nih.gov/abouttcga/overview. More details about The Cancer Genome Atlas, including Quick Facts, Q&A, graphics, glossary, a brief guide to genomics and a media library of available images can be found at http://cancergenome.nih.gov.

NCI Press Office | EurekAlert!
Further information:
http://cancergenome.nih.gov
http://www.nih.gov

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>