Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Kidney cancer progression linked to shifts in tumor metabolism

25.06.2013
Scientists with The Cancer Genome Atlas identify genomic alterations tied to tumor aggressiveness

Investigators in The Cancer Genome Atlas (TCGA) Research Network have uncovered a connection between how tumor cells use energy from metabolic processes and the aggressiveness of the most common form of kidney cancer, clear cell renal cell carcinoma (ccRCC). Their findings demonstrate that normal metabolism is altered in ccRCC tumor cells, and involves a shift from using one metabolic pathway to another. This change – termed a metabolic shift – correlates with tumor stage and severity in some cases.


Drawing of kidneys with image on the left depicting a cross section of one kidney

The scientists also found mutations in a pathway that may cause increased aggressiveness in this cancer. Taken together, the findings may offer new insight into underlying disease mechanisms and potential treatments as well as an understanding of how some cancer cells can shift from using normal metabolic pathways to alternative pathways, thereby providing a growth advantage to tumor cells. In general, changes in metabolic enzymes that promote growth of the tumor are associated with worse patient outcomes in this disease. This latest TCGA research supports previous evidence of a metabolic shift in a different subtype of kidney cancer.

The scientists used data generated by TCGA, a collaborative effort funded by the National Cancer Institute (NCI) and the National Human Genome Research Institute (NHGRI), both parts of the National Institutes of Health. The results of this study were published online June 23, 2013, in Nature.

“Because of TCGA's comprehensive characterization of kidney tumors and correlating that with patient survival data, researchers now can begin applying this knowledge to validating prognostic biomarkers and identifying new therapeutic strategies for this disease,” said NIH Director, Francis S. Collins, M.D., Ph.D.

In the study, scientists examined nearly 450 ccRCC tumors and matched each with a normal sample from the same patient. When they looked at the amounts of specific proteins expressed in cancer cells, they found that low levels of one protein essential to cell metabolism (AMPK) and high levels of another (acetyl-CoA carboxylase) were associated with worse patient outcomes.

“Earlier findings from the characterization of other types of cancers have given us important clues as to how to design better therapies for these cancers,” said NCI Director Harold Varmus, M.D. “The new results from the TCGA analysis of clear cell renal cell carcinomas provide an explanation for how mutations in certain genes can alter chromosome chemistry to produce changes in enzyme levels that affect cell metabolism in ways correlated with clinical outcomes. These findings will stimulate some novel ideas about therapies for other lethal cancers.”

In addition to the connection between metabolic shift and tumor aggressiveness, TCGA Research Network scientists discovered that, in some cases, the metabolic shift may be caused by changes in the PI3K cellular pathway, which helps regulate cell metabolism. The investigators observed a number of changes in P13K pathway genes and its regulators in tumor cells, including DNA mutations in protein-coding areas, as well as other changes affecting gene expression. They found such alterations in the PI3K pathway — or its partner pathways, AKT and mTOR — in 29 percent of tumor samples. AKT and mTOR also are essential for regulating cellular metabolism.

The effects of these changes show the importance of the PI3K/AKT/mTOR pathways. For example, researchers found a decrease in factors that activate tumor suppressor genes – the genes that produce proteins aimed at blocking tumor development. At the same time, factors that turned on genes that inhibit the PI3K pathway were blocked. Both of these changes promote activity in the PI3K/AKT/mTOR pathways. The results suggest the pathways’ potential as therapeutic targets with inhibitor drugs.

“These findings illustrate how large, multi-dimensional datasets obtained from the rigorous analyses of hundreds of tumors can be mined to uncover new insights into cancer biology,” said NHGRI Director Eric Green, M.D., Ph.D. “By creating these types of datasets, TCGA has advanced our fundamental understanding of this type of cancer.”

W. Marston Linehan, M.D., chief of the NCI Urologic Oncology Branch and one of the study’s leaders, sees several implications from the results. “The finding of a metabolic shift in the aggressive tumors could provide the foundation for the development of a number of novel approaches to therapy for patients with advanced kidney cancer,” said Linehan.

New therapies are especially important since advanced kidney cancer is often resistant to chemotherapy. TCGA data offer insights into various global processes occurring in kidney cancer and can show how different tumor pathways intersect.

“The molecular analysis of this disease impacts understanding of all cancers through furthering insights into the role of metabolic perturbation in malignancy,” said Richard A. Gibbs, Ph.D., another lead investigator in the project and director of the Human Genome Sequencing Center at Baylor College of Medicine, Houston.

NCI estimates that nearly 65,000 people in this country will be diagnosed with ccRCC in 2013, and more than 13,000 people will die from the disease. More than 50 percent of patients with early stage renal cell cancer are successfully treated with current therapies. However, nearly all patients with the most severe stage of this cancer have a poor prognosis.

To date, the TCGA Research Network has generated data and published analyses on glioblastoma multiforme, ovarian serous adenocarcinoma, colorectal adenocarcinoma, lung squamous cell carcinoma, invasive breast cancer, acute myeloid leukemia, and endometrial cancer. TCGA-generated data are freely available at the TCGA Data Portal and CGHub.

This work was supported by the following grants: 5U24CA143799, 5U24CA143835, 5U24CA143840, 5U24CA143843, 5U24CA143845, 5U24CA143848, 5U24CA143858, 5U24CA143866, 5U24CA143867, 5U24CA143882, 5U24CA143883, 5U24CA144025, U54HG003067, U54HG003079, and U54HG003273, P30CA16672.

Reference: The Cancer Genome Atlas Network. Integrative analysis of genomic and molecular alterations in clear cell renal cell carcinoma. Nature. Online June 23, 2013. In print July 4, 2013. doi:10.1038/nature12222.

The TCGA Research Network consists of more than 150 researchers at dozens of institutions across the nation. A list of participants is available at http://cancergenome.nih.gov/abouttcga/overview. More details about The Cancer Genome Atlas, including Quick Facts, Q&A, graphics, glossary, a brief guide to genomics and a media library of available images can be found at http://cancergenome.nih.gov.

NCI Press Office | EurekAlert!
Further information:
http://cancergenome.nih.gov
http://www.nih.gov

More articles from Health and Medicine:

nachricht Oxygen can wake up dormant bacteria for antibiotic attacks
08.12.2016 | Penn State

nachricht NTU scientists build new ultrasound device using 3-D printing technology
07.12.2016 | Nanyang Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

Decoding cement's shape promises greener concrete

08.12.2016 | Materials Sciences

Will Earth still exist 5 billion years from now?

08.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>