Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ketamine Cousin Rapidly Lifts Depression Without Side Effects

31.05.2013
GLYX-13, a molecular cousin to ketamine, induces similar antidepressant results without the street drug side effects, reported a study funded by the National Institute of Mental Health (NIMH) that was published last month in Neuropsychopharmacology.

Background

Major depression affects about 10 percent of the adult population and is the second leading cause of disability in U.S. adults, according to the World Health Organization. Despite the availability of several different classes of antidepressant drugs such as selective serotonin reuptake inhibitors (SSRIs), 30 to 40 percent of adults are unresponsive to these medications. Moreover, SSRIs typically take weeks to work, which increases the risk for suicide.

Enter NMDA (N-methyl-D-aspartate) receptor modulators. In the 1970s, researchers linked the receptors to learning and memory. Biotech and pharmaceutical companies in the 1980s attempted to apply chemical blockers to these receptors as a means to prevent stroke. But blocking these receptors led to the opposite effect—--the rise of cardiovascular disease. Research in the field dampened until a glutamate receptor antagonist already approved for anesthesia, and known on the streets as “Special K”, ketamine, made headlines in the early 2000s. Human clinical studies demonstrated that ketamine can ward off major and bipolar depressive symptoms within 2 hours of administration and last for several days. Ketamine is fraught with serious side effects including excessive sleepiness, hallucinations, and substance abuse behavior.

“Ketamine lit the field back up,“ said Joseph Moskal, Ph.D., a molecular neurobiologist at Northwestern University and senior study author. “Our drug, GLYX-13, is very different. It does not block the receptor ion channel, which may account for why it doesn’t have the same side effects.”

Moskal’s journey with GLYX-13 came about from his earlier days as a Senior Staff Fellow in NIMH’s Intramural Research Program. While at NIMH, he created specific molecules, monoclonal antibodies, to use as new probes to understand pathways of learning and memory. Some of the antibodies he created were for NMDA receptors. When he moved to Northwestern University, Moskal converted the antibodies to small protein molecules. Comprised of only four amino acids, GLYX-13 is one of these molecules.

Previous electrophysiological and conditioning studies had suggested that GLYX-13, unlike ketamine, enhanced memory and learning in rats, particularly in the brain’s memory hub or hippocampus. GLYX-13 also produced analgesic effects. Using several rat behavioral and molecular experiments, Moskal’s research team tested four compounds: GLYX-13, an inactive, “scrambled” version of GLYX-13 that had its amino acids rearranged, ketamine, and the SSRI fluoxetine.

Results of the Study

GLYX-13 and ketamine produced rapid acting (1 hour) and long-lasting (24 hour) antidepressant-like effects in the rats. Fluoxetine, an SSRI that typically takes from 2–4 weeks to show efficacy in humans, did not produce a rapid antidepressant effect in this study. As expected, the scrambled GLYX-13 showed no antidepressant-like effects at all. The researchers observed none of the aforementioned side effects of ketamine in the GLYX-13–treated rats.

Protein studies indicated an increase in the hippocampus of the NMDA receptor NR2B and a receptor for the chemical messenger glutamate called AMPA. Electrophysiology studies in this brain region showed that GLYX-13 and ketamine promoted long-lasting signal transmission in neurons, known as long-term potentiation/synaptic plasticity. This phenomenon is essential in learning and memory. The researchers propose how GLYX-13 works: GLYX-13 triggers NR2B receptor activation that leads to intracellular calcium influx and the expression of AMPA, which then is responsible for increased communication between neurons.

These results are consistent with data from a recent Phase 2 clinical trial, in which a single administration of GLYX-13 produced statistically significant reductions in depression scores in patients who had failed treatment with current antidepressants. The reductions were evident within 24 hours and persisted for an average of 7 days. After a single dose of GLYX-13, the drug’s antidepressant efficacy nearly doubled that seen with most conventional antidepressants after 4–6 weeks of dosing. GLYX-13 was well tolerated and it did not produce any of the schizophrenia-like effects associated with other NMDA receptor modulating agents.

Significance

NMDA receptors need a molecule each of the amino acid chemical messengers glutamate and glycine to become activated. Moskal speculates that GLYX-13 either directly binds to the glycine site on the NMDA receptor or indirectly modulates how glycine works with the receptor. Resulting activation of more NMDA and AMPA receptors leads to an increase in memory, learning—and antidepressant effects. By contrast, ketamine only blocks the NMDA receptor, but also increases the activity of the AMPA receptor. Knowledge of these mechanisms could lead to the development of more effective antidepressants.

What’s Next

GLYX-13 is now being tested in a Phase 2 repeated dose antidepressant trial, where Moskal and his colleagues at Naurex, Inc., a biotechnology company he founded, hope to find in humans the optimal dosing for the drug. They also want to see if this molecule, and others like it, regulate other NMDA receptor subtypes—there are over 20 of them—and whether it will work on other disorders, such as schizophrenia, attention-deficit hyperactivity disorder, and autism.

“One could call NMDA modulators such as GLYX-13 ‘comeback kids,’” said Moskal. “A toolkit that I developed in 1983 is now setting the stage in 2013 for the development of possible new therapeutics that may provide individuals suffering from depression with a valuable new treatment option.”

Reference

Burgdorf J, Zhang X-l, Nicholson KL, Balster RL, Leander JD, Stanton PK, Gross AL, Kroes RA, Moskal JR. GLYX-13, a NMDA Receptor Glycine-Site Functional Partial Agonist, Induces Antidepressant-Like Effects Without Ketamine-Like Side Effects. Neuropsychopharmacology, April 2013. 38:729–742.

Jackie Oberst | EurekAlert!
Further information:
http://www.nih.gov

More articles from Health and Medicine:

nachricht Hot cars can hit deadly temperatures in as little as one hour
24.05.2018 | Arizona State University

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>