Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Kessler stroke researchers explore five new avenues for rehabilitation research

27.11.2013
Treatments based on behavioral or non-invasive physiological stimulation show greatest potential

Because the concept of permanent neurological injury has given way to recognition of the brain’s potential for long-term regeneration ad reorganization, rehabilitations strategies are undergoing radical changes. The potential for five new translational interventions was examined in an article published ahead of print on November 13 by Neurology Clinical Practice: Barrett AM, Oh-Park M, Chen P, Ifejika NL: Five New Things in Neurorehabilitation. doi: 10.1212/01.CPJ.0000437088.98407.fa. Drs. Barrett, Oh-Park and Chen are affiliated with Kessler Foundation. Dr. Ifejika is with the University of Texas Medical School at Houston.

Medical resources are limited, so it is important to focus on areas of greatest potential, according to Dr. Barrett, and strive for advances that translate to effective treatments in the shortest possible timeframes. An emphasis on experience-dependent learning is advised, as well as biological techniques that induce a permissive state for the development of new, optimal, functional brain activation patterns. “The five treatments we identified are based on behavioral (1, 2, 3), or non-invasive physiological stimulation (4, 5),” said Dr. Barrett. “While these have been explored primarily in stroke rehabilitation, they are potentially applicable to other neurological conditions such as brain injury, spinal cord injury and multiple sclerosis.”

Constraint-induced movement therapy, and other intensive, experience-dependent learning, may improve rehabilitation outcomes in people with hemiparesis from stroke and other brain disorders.

2. Constraint-induced language therapy, and other methods to stimulate speech and motor output, may improve rehabilitation outcomes in aphasia.

Prism adaptation therapy, and therapies using virtual feedback and implicitly integrating 3-D motor and perceptual function, may improve function in spatial neglect.

Transcranial magnetic stimulation may induce a permissive brain state therapeutic for depression and promoting better motor and cognitive recovery.

Transcranial direct current stimulation might promote better mood, motor and cognitive rehabilitation outcomes, and has an appealing risk/cost profile for feasible future implementation.

Funding: Supported by Kessler Foundation (AMB, MO-P, PC), the National Institutes of Health (R01NS 055808 and K24HD062647: PI Barrett) and the Department of Education (NIDRR grant H133G120203).

About Stroke Rehabilitation Research at Kessler Foundation

Research studies span all domains of post-stroke cognitive dysfunction, but emphasize hidden disabilities after stroke, including hidden disabilities of functional vision (spatial bias and spatial neglect). Students, resident physicians, and post-doctoral trainees are mentored in translational neuroscience of rehabilitation. Dr. Barrett and her colleagues work closely with the clinical staff at Kessler Institute for Rehabilitation. Among their collaborative efforts are the founding of the Network for Spatial Neglect and development of the Kessler Foundation Neglect Assessment Process (KF-NAPTM). Stroke Research receives funding from the Department of Education/NIDRR; the National Institutes of Health/NICHD/NCMRR; Kessler Foundation; the Healthcare Foundation of New Jersey; and the Wallerstein Foundation for Geriatric Improvement. Scientists have faculty appointments at Rutgers New Jersey Medical School.

About A.M. Barrett, MD

A.M. Barrett, MD, a cognitive neurologist and clinical researcher, is director of Stroke Rehabilitation Research at Kessler Foundation, as well as chief of Neurorehabilitation Program Innovation at Kessler Institute for Rehabilitation. Her focus is brain-behavior relationships from the perspectives of cognitive neurology, cognitive neuroscience, and cognitive neurorehabilitation. Dr. Barrett is an expert in hidden cognitive disabilities after stroke, which contribute to safety problems & rehospitalization, increased caregiver burden, & poor hospital-to-home transition. She is a founder of the Network for Spatial Neglect, which promotes multidisciplinary research for this underdiagnosed hidden disability. Dr. Barrett is also professor of physical medicine & rehabilitation at Rutgers New Jersey Medical School and adjunct professor of neurology at Columbia University School of Medicine. She is a former president of the American Society for Neurorehabilitation.

Dr. Barrett is author of the reference article Spatial Neglect on emedicine.com. A recent publication is Barrett AM. Picturing the body in spatial neglect: descending a staircase. Neurology. 2013 Oct 8;81(15):1280-1.About Kessler Foundation

Kessler Foundation, a major nonprofit organization in the field of disability, is a global leader in rehabilitation research that seeks to improve cognition, mobility and long-term outcomes, including employment, for people with neurological disabilities caused by diseases and injuries of the brain and spinal cord. Kessler Foundation leads the nation in funding innovative programs that expand opportunities for employment for people with disabilities. For more information, visit KesslerFoundation.org.

KesslerFoundation.org

facebook.com/KesslerFoundation

http://twitter.com/#!/KesslerFdn

Carolann Murphy, PA; 973.324.8382; CMurphy@KesslerFoundation.org

Lauren Scrivo, 973.324.8384/973.768.6583 (cell); LScrivo@KesslerFoundation.org

Carolann Murphy | EurekAlert!
Further information:
http://www.KesslerFoundation.org

More articles from Health and Medicine:

nachricht One gene closer to regenerative therapy for muscular disorders
01.06.2017 | Cincinnati Children's Hospital Medical Center

nachricht The gut microbiota plays a key role in treatment with classic diabetes medication
01.06.2017 | University of Gothenburg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>