Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Kessler stroke researchers explore five new avenues for rehabilitation research

27.11.2013
Treatments based on behavioral or non-invasive physiological stimulation show greatest potential

Because the concept of permanent neurological injury has given way to recognition of the brain’s potential for long-term regeneration ad reorganization, rehabilitations strategies are undergoing radical changes. The potential for five new translational interventions was examined in an article published ahead of print on November 13 by Neurology Clinical Practice: Barrett AM, Oh-Park M, Chen P, Ifejika NL: Five New Things in Neurorehabilitation. doi: 10.1212/01.CPJ.0000437088.98407.fa. Drs. Barrett, Oh-Park and Chen are affiliated with Kessler Foundation. Dr. Ifejika is with the University of Texas Medical School at Houston.

Medical resources are limited, so it is important to focus on areas of greatest potential, according to Dr. Barrett, and strive for advances that translate to effective treatments in the shortest possible timeframes. An emphasis on experience-dependent learning is advised, as well as biological techniques that induce a permissive state for the development of new, optimal, functional brain activation patterns. “The five treatments we identified are based on behavioral (1, 2, 3), or non-invasive physiological stimulation (4, 5),” said Dr. Barrett. “While these have been explored primarily in stroke rehabilitation, they are potentially applicable to other neurological conditions such as brain injury, spinal cord injury and multiple sclerosis.”

Constraint-induced movement therapy, and other intensive, experience-dependent learning, may improve rehabilitation outcomes in people with hemiparesis from stroke and other brain disorders.

2. Constraint-induced language therapy, and other methods to stimulate speech and motor output, may improve rehabilitation outcomes in aphasia.

Prism adaptation therapy, and therapies using virtual feedback and implicitly integrating 3-D motor and perceptual function, may improve function in spatial neglect.

Transcranial magnetic stimulation may induce a permissive brain state therapeutic for depression and promoting better motor and cognitive recovery.

Transcranial direct current stimulation might promote better mood, motor and cognitive rehabilitation outcomes, and has an appealing risk/cost profile for feasible future implementation.

Funding: Supported by Kessler Foundation (AMB, MO-P, PC), the National Institutes of Health (R01NS 055808 and K24HD062647: PI Barrett) and the Department of Education (NIDRR grant H133G120203).

About Stroke Rehabilitation Research at Kessler Foundation

Research studies span all domains of post-stroke cognitive dysfunction, but emphasize hidden disabilities after stroke, including hidden disabilities of functional vision (spatial bias and spatial neglect). Students, resident physicians, and post-doctoral trainees are mentored in translational neuroscience of rehabilitation. Dr. Barrett and her colleagues work closely with the clinical staff at Kessler Institute for Rehabilitation. Among their collaborative efforts are the founding of the Network for Spatial Neglect and development of the Kessler Foundation Neglect Assessment Process (KF-NAPTM). Stroke Research receives funding from the Department of Education/NIDRR; the National Institutes of Health/NICHD/NCMRR; Kessler Foundation; the Healthcare Foundation of New Jersey; and the Wallerstein Foundation for Geriatric Improvement. Scientists have faculty appointments at Rutgers New Jersey Medical School.

About A.M. Barrett, MD

A.M. Barrett, MD, a cognitive neurologist and clinical researcher, is director of Stroke Rehabilitation Research at Kessler Foundation, as well as chief of Neurorehabilitation Program Innovation at Kessler Institute for Rehabilitation. Her focus is brain-behavior relationships from the perspectives of cognitive neurology, cognitive neuroscience, and cognitive neurorehabilitation. Dr. Barrett is an expert in hidden cognitive disabilities after stroke, which contribute to safety problems & rehospitalization, increased caregiver burden, & poor hospital-to-home transition. She is a founder of the Network for Spatial Neglect, which promotes multidisciplinary research for this underdiagnosed hidden disability. Dr. Barrett is also professor of physical medicine & rehabilitation at Rutgers New Jersey Medical School and adjunct professor of neurology at Columbia University School of Medicine. She is a former president of the American Society for Neurorehabilitation.

Dr. Barrett is author of the reference article Spatial Neglect on emedicine.com. A recent publication is Barrett AM. Picturing the body in spatial neglect: descending a staircase. Neurology. 2013 Oct 8;81(15):1280-1.About Kessler Foundation

Kessler Foundation, a major nonprofit organization in the field of disability, is a global leader in rehabilitation research that seeks to improve cognition, mobility and long-term outcomes, including employment, for people with neurological disabilities caused by diseases and injuries of the brain and spinal cord. Kessler Foundation leads the nation in funding innovative programs that expand opportunities for employment for people with disabilities. For more information, visit KesslerFoundation.org.

KesslerFoundation.org

facebook.com/KesslerFoundation

http://twitter.com/#!/KesslerFdn

Carolann Murphy, PA; 973.324.8382; CMurphy@KesslerFoundation.org

Lauren Scrivo, 973.324.8384/973.768.6583 (cell); LScrivo@KesslerFoundation.org

Carolann Murphy | EurekAlert!
Further information:
http://www.KesslerFoundation.org

More articles from Health and Medicine:

nachricht Cholesterol-lowering drugs may fight infectious disease
22.08.2017 | Duke University

nachricht Once invincible superbug squashed by 'superteam' of antibiotics
22.08.2017 | University at Buffalo

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>