Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Kenya develops tool to predict malaria

01.09.2010
The Kenya Medical Research Institute has launched a tool aimed at predicting malaria outbreaks in any area of East Africa two to three months before they occur.

This article first appeared in Reuters AlertNet, a humanitarian news network that aims to keep relief professionals and the wider public up-to-date on humanitarian crises around the globe.

By Isaiah Esipisu

In collaboration with scientists from the Kenya Meteorological Department and the International Centre for Insect Physiology and Ecology, the institute has designed a scientific model that uses weather predictions, information about the reproductive mechanisms of mosquitoes, and data on geographical formations of particular areas to predict surges in malaria.

"Rainfall (and) temperatures can be used to explain up to 80 percent of statistical variation in malaria incidences. This is because the temperature variations are extremely important in breeding of mosquitoes. That is why involving the weatherman to predict the level of expected temperatures and the expected amount of rainfall is extremely important for this model to work accurately," said Dr Andrew Githeko, a malaria expert and one of the lead researchers on the project.

So far, the model has worked effectively in tests in western areas of Kenya, including Nyanza province, Western province and the Rift Valley province, as well as in Tanzania and Uganda.

"We have been trying the model for the past nine years in the three countries. We used the platform of the 1997 El Nino rains, the 2003 long rains and the 2006 long rains, where the model was able to predict malaria outbreaks in hundreds of sites, where indeed the outbreaks struck," Githeko said.

Accuracy Range Is 86 To 100 Percent

The most impressive test, he said, was in Kakamega district found in western Kenya, where the model worked with 100 percent accuracy in all nine years of the trial period. Areas like Nandi and Kericho, in Kenya's Rift Valley province, were predicted with 86 percent success.

The model worked with 90 percent effectiveness in all three countries overall, he said.

So far, despite ongoing rains in Kenya, the model has predicted there will be no malaria epidemic this season in Kakamega, a normally endemic malaria area, because temperatures are very low and don't favor mass breeding of mosquitoes.

"Though most of the places where the model was tested are malaria endemic areas, we have factored in even the highland areas because research has shown that the disease is slowly infesting highland areas due to the looming climate change," Githeko said.

According to the researchers, heavy rains linked to the El Nino climate phenomenon have caused the appearance of springs in highland areas, which produce clean water that is suitable for mosquito breeding.

In 1990, for example, significant numbers of malaria cases began appearing in the highlands of East Africa.

"During that time, it was not clear what was causing the epidemic. But, as scientists, we believed that climate variability had something to do with it, prompting KEMRI (the Kenya Medical Research Institute) to propose for a study after the repeat of the same (problem) during the 1997-98 El Nino rains," said Dr John Githure, KEMRI's director.

When malaria strikes such highland areas, it can cause severe health problems. Because most of the residents have not been highly exposed to the disease their immunity against it is poorer than that of people living in areas with a high incidence of malaria.

Research shows that this kind of malaria has been on the increase in East Africa and is an emerging climate-related hazard that needs urgent attention. Malaria incidence increased by 337 percent during the 1987 epidemic in Rwanda, studies show. In Tanzania, Uganda and Kenya, records indicate that it increased by 146 percent, 256 percent and 300 percent, respectively, during and after the extreme rains of 1997-98.

Modeling Helps Target Spraying

To avoid malaria outbreaks in highland areas, where it kills more people than in low-land areas, East African governments have been depending on indoor spraying of long-lasting pesticides when long rains that might lead to an outbreak are anticipated.

But with the new model now in place, spraying can be done only when the model suggests an outbreak is imminent. Experts say that spraying at the right time also reduces the chances of mosquitoes building resistance against the insecticides.

The disease prediction tool should also help policymakers and health officials prepare in time to deal with looming outbreaks.

Malaria was selected as the first disease to study because of its severe effects but the model might also be adapted to other diseases, the report's authors said.

KEMRI now has a special unit to carry out research on the interactions between climate change and human health variability, Githure said.

Even before it was proved effective, the new model for malaria prediction was one of the tools selected by the U.N. as an example of practical adaptation to climate change. The U.N. has strongly suggested the model be further developed.

The project was funded by the Climate Change Adaptation in Africa program, Canada’s International Development Research Centre and Britain's Department for International Development.

Isaiah Esipisu is a science writer based in Nairobi.

Isabelle Bourgeault-Tassé | Research asia research news
Further information:
http://www.idrc.ca/en/ev-157409-201-1-DO_TOPIC.html
http://www.researchsea.com

More articles from Health and Medicine:

nachricht Hot cars can hit deadly temperatures in as little as one hour
24.05.2018 | Arizona State University

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>