Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Kenya develops tool to predict malaria

01.09.2010
The Kenya Medical Research Institute has launched a tool aimed at predicting malaria outbreaks in any area of East Africa two to three months before they occur.

This article first appeared in Reuters AlertNet, a humanitarian news network that aims to keep relief professionals and the wider public up-to-date on humanitarian crises around the globe.

By Isaiah Esipisu

In collaboration with scientists from the Kenya Meteorological Department and the International Centre for Insect Physiology and Ecology, the institute has designed a scientific model that uses weather predictions, information about the reproductive mechanisms of mosquitoes, and data on geographical formations of particular areas to predict surges in malaria.

"Rainfall (and) temperatures can be used to explain up to 80 percent of statistical variation in malaria incidences. This is because the temperature variations are extremely important in breeding of mosquitoes. That is why involving the weatherman to predict the level of expected temperatures and the expected amount of rainfall is extremely important for this model to work accurately," said Dr Andrew Githeko, a malaria expert and one of the lead researchers on the project.

So far, the model has worked effectively in tests in western areas of Kenya, including Nyanza province, Western province and the Rift Valley province, as well as in Tanzania and Uganda.

"We have been trying the model for the past nine years in the three countries. We used the platform of the 1997 El Nino rains, the 2003 long rains and the 2006 long rains, where the model was able to predict malaria outbreaks in hundreds of sites, where indeed the outbreaks struck," Githeko said.

Accuracy Range Is 86 To 100 Percent

The most impressive test, he said, was in Kakamega district found in western Kenya, where the model worked with 100 percent accuracy in all nine years of the trial period. Areas like Nandi and Kericho, in Kenya's Rift Valley province, were predicted with 86 percent success.

The model worked with 90 percent effectiveness in all three countries overall, he said.

So far, despite ongoing rains in Kenya, the model has predicted there will be no malaria epidemic this season in Kakamega, a normally endemic malaria area, because temperatures are very low and don't favor mass breeding of mosquitoes.

"Though most of the places where the model was tested are malaria endemic areas, we have factored in even the highland areas because research has shown that the disease is slowly infesting highland areas due to the looming climate change," Githeko said.

According to the researchers, heavy rains linked to the El Nino climate phenomenon have caused the appearance of springs in highland areas, which produce clean water that is suitable for mosquito breeding.

In 1990, for example, significant numbers of malaria cases began appearing in the highlands of East Africa.

"During that time, it was not clear what was causing the epidemic. But, as scientists, we believed that climate variability had something to do with it, prompting KEMRI (the Kenya Medical Research Institute) to propose for a study after the repeat of the same (problem) during the 1997-98 El Nino rains," said Dr John Githure, KEMRI's director.

When malaria strikes such highland areas, it can cause severe health problems. Because most of the residents have not been highly exposed to the disease their immunity against it is poorer than that of people living in areas with a high incidence of malaria.

Research shows that this kind of malaria has been on the increase in East Africa and is an emerging climate-related hazard that needs urgent attention. Malaria incidence increased by 337 percent during the 1987 epidemic in Rwanda, studies show. In Tanzania, Uganda and Kenya, records indicate that it increased by 146 percent, 256 percent and 300 percent, respectively, during and after the extreme rains of 1997-98.

Modeling Helps Target Spraying

To avoid malaria outbreaks in highland areas, where it kills more people than in low-land areas, East African governments have been depending on indoor spraying of long-lasting pesticides when long rains that might lead to an outbreak are anticipated.

But with the new model now in place, spraying can be done only when the model suggests an outbreak is imminent. Experts say that spraying at the right time also reduces the chances of mosquitoes building resistance against the insecticides.

The disease prediction tool should also help policymakers and health officials prepare in time to deal with looming outbreaks.

Malaria was selected as the first disease to study because of its severe effects but the model might also be adapted to other diseases, the report's authors said.

KEMRI now has a special unit to carry out research on the interactions between climate change and human health variability, Githure said.

Even before it was proved effective, the new model for malaria prediction was one of the tools selected by the U.N. as an example of practical adaptation to climate change. The U.N. has strongly suggested the model be further developed.

The project was funded by the Climate Change Adaptation in Africa program, Canada’s International Development Research Centre and Britain's Department for International Development.

Isaiah Esipisu is a science writer based in Nairobi.

Isabelle Bourgeault-Tassé | Research asia research news
Further information:
http://www.idrc.ca/en/ev-157409-201-1-DO_TOPIC.html
http://www.researchsea.com

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>