Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Kenya develops tool to predict malaria

01.09.2010
The Kenya Medical Research Institute has launched a tool aimed at predicting malaria outbreaks in any area of East Africa two to three months before they occur.

This article first appeared in Reuters AlertNet, a humanitarian news network that aims to keep relief professionals and the wider public up-to-date on humanitarian crises around the globe.

By Isaiah Esipisu

In collaboration with scientists from the Kenya Meteorological Department and the International Centre for Insect Physiology and Ecology, the institute has designed a scientific model that uses weather predictions, information about the reproductive mechanisms of mosquitoes, and data on geographical formations of particular areas to predict surges in malaria.

"Rainfall (and) temperatures can be used to explain up to 80 percent of statistical variation in malaria incidences. This is because the temperature variations are extremely important in breeding of mosquitoes. That is why involving the weatherman to predict the level of expected temperatures and the expected amount of rainfall is extremely important for this model to work accurately," said Dr Andrew Githeko, a malaria expert and one of the lead researchers on the project.

So far, the model has worked effectively in tests in western areas of Kenya, including Nyanza province, Western province and the Rift Valley province, as well as in Tanzania and Uganda.

"We have been trying the model for the past nine years in the three countries. We used the platform of the 1997 El Nino rains, the 2003 long rains and the 2006 long rains, where the model was able to predict malaria outbreaks in hundreds of sites, where indeed the outbreaks struck," Githeko said.

Accuracy Range Is 86 To 100 Percent

The most impressive test, he said, was in Kakamega district found in western Kenya, where the model worked with 100 percent accuracy in all nine years of the trial period. Areas like Nandi and Kericho, in Kenya's Rift Valley province, were predicted with 86 percent success.

The model worked with 90 percent effectiveness in all three countries overall, he said.

So far, despite ongoing rains in Kenya, the model has predicted there will be no malaria epidemic this season in Kakamega, a normally endemic malaria area, because temperatures are very low and don't favor mass breeding of mosquitoes.

"Though most of the places where the model was tested are malaria endemic areas, we have factored in even the highland areas because research has shown that the disease is slowly infesting highland areas due to the looming climate change," Githeko said.

According to the researchers, heavy rains linked to the El Nino climate phenomenon have caused the appearance of springs in highland areas, which produce clean water that is suitable for mosquito breeding.

In 1990, for example, significant numbers of malaria cases began appearing in the highlands of East Africa.

"During that time, it was not clear what was causing the epidemic. But, as scientists, we believed that climate variability had something to do with it, prompting KEMRI (the Kenya Medical Research Institute) to propose for a study after the repeat of the same (problem) during the 1997-98 El Nino rains," said Dr John Githure, KEMRI's director.

When malaria strikes such highland areas, it can cause severe health problems. Because most of the residents have not been highly exposed to the disease their immunity against it is poorer than that of people living in areas with a high incidence of malaria.

Research shows that this kind of malaria has been on the increase in East Africa and is an emerging climate-related hazard that needs urgent attention. Malaria incidence increased by 337 percent during the 1987 epidemic in Rwanda, studies show. In Tanzania, Uganda and Kenya, records indicate that it increased by 146 percent, 256 percent and 300 percent, respectively, during and after the extreme rains of 1997-98.

Modeling Helps Target Spraying

To avoid malaria outbreaks in highland areas, where it kills more people than in low-land areas, East African governments have been depending on indoor spraying of long-lasting pesticides when long rains that might lead to an outbreak are anticipated.

But with the new model now in place, spraying can be done only when the model suggests an outbreak is imminent. Experts say that spraying at the right time also reduces the chances of mosquitoes building resistance against the insecticides.

The disease prediction tool should also help policymakers and health officials prepare in time to deal with looming outbreaks.

Malaria was selected as the first disease to study because of its severe effects but the model might also be adapted to other diseases, the report's authors said.

KEMRI now has a special unit to carry out research on the interactions between climate change and human health variability, Githure said.

Even before it was proved effective, the new model for malaria prediction was one of the tools selected by the U.N. as an example of practical adaptation to climate change. The U.N. has strongly suggested the model be further developed.

The project was funded by the Climate Change Adaptation in Africa program, Canada’s International Development Research Centre and Britain's Department for International Development.

Isaiah Esipisu is a science writer based in Nairobi.

Isabelle Bourgeault-Tassé | Research asia research news
Further information:
http://www.idrc.ca/en/ev-157409-201-1-DO_TOPIC.html
http://www.researchsea.com

More articles from Health and Medicine:

nachricht Norovirus evades immune system by hiding out in rare gut cells
12.10.2017 | University of Pennsylvania School of Medicine

nachricht Flexible sensors can detect movement in GI tract
11.10.2017 | Massachusetts Institute of Technology

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Study suggests oysters offer hot spot for reducing nutrient pollution

17.10.2017 | Life Sciences

Breaking: the first light from two neutron stars merging

17.10.2017 | Physics and Astronomy

World first for reading digitally encoded synthetic molecules

17.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>