Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Kenya develops tool to predict malaria

01.09.2010
The Kenya Medical Research Institute has launched a tool aimed at predicting malaria outbreaks in any area of East Africa two to three months before they occur.

This article first appeared in Reuters AlertNet, a humanitarian news network that aims to keep relief professionals and the wider public up-to-date on humanitarian crises around the globe.

By Isaiah Esipisu

In collaboration with scientists from the Kenya Meteorological Department and the International Centre for Insect Physiology and Ecology, the institute has designed a scientific model that uses weather predictions, information about the reproductive mechanisms of mosquitoes, and data on geographical formations of particular areas to predict surges in malaria.

"Rainfall (and) temperatures can be used to explain up to 80 percent of statistical variation in malaria incidences. This is because the temperature variations are extremely important in breeding of mosquitoes. That is why involving the weatherman to predict the level of expected temperatures and the expected amount of rainfall is extremely important for this model to work accurately," said Dr Andrew Githeko, a malaria expert and one of the lead researchers on the project.

So far, the model has worked effectively in tests in western areas of Kenya, including Nyanza province, Western province and the Rift Valley province, as well as in Tanzania and Uganda.

"We have been trying the model for the past nine years in the three countries. We used the platform of the 1997 El Nino rains, the 2003 long rains and the 2006 long rains, where the model was able to predict malaria outbreaks in hundreds of sites, where indeed the outbreaks struck," Githeko said.

Accuracy Range Is 86 To 100 Percent

The most impressive test, he said, was in Kakamega district found in western Kenya, where the model worked with 100 percent accuracy in all nine years of the trial period. Areas like Nandi and Kericho, in Kenya's Rift Valley province, were predicted with 86 percent success.

The model worked with 90 percent effectiveness in all three countries overall, he said.

So far, despite ongoing rains in Kenya, the model has predicted there will be no malaria epidemic this season in Kakamega, a normally endemic malaria area, because temperatures are very low and don't favor mass breeding of mosquitoes.

"Though most of the places where the model was tested are malaria endemic areas, we have factored in even the highland areas because research has shown that the disease is slowly infesting highland areas due to the looming climate change," Githeko said.

According to the researchers, heavy rains linked to the El Nino climate phenomenon have caused the appearance of springs in highland areas, which produce clean water that is suitable for mosquito breeding.

In 1990, for example, significant numbers of malaria cases began appearing in the highlands of East Africa.

"During that time, it was not clear what was causing the epidemic. But, as scientists, we believed that climate variability had something to do with it, prompting KEMRI (the Kenya Medical Research Institute) to propose for a study after the repeat of the same (problem) during the 1997-98 El Nino rains," said Dr John Githure, KEMRI's director.

When malaria strikes such highland areas, it can cause severe health problems. Because most of the residents have not been highly exposed to the disease their immunity against it is poorer than that of people living in areas with a high incidence of malaria.

Research shows that this kind of malaria has been on the increase in East Africa and is an emerging climate-related hazard that needs urgent attention. Malaria incidence increased by 337 percent during the 1987 epidemic in Rwanda, studies show. In Tanzania, Uganda and Kenya, records indicate that it increased by 146 percent, 256 percent and 300 percent, respectively, during and after the extreme rains of 1997-98.

Modeling Helps Target Spraying

To avoid malaria outbreaks in highland areas, where it kills more people than in low-land areas, East African governments have been depending on indoor spraying of long-lasting pesticides when long rains that might lead to an outbreak are anticipated.

But with the new model now in place, spraying can be done only when the model suggests an outbreak is imminent. Experts say that spraying at the right time also reduces the chances of mosquitoes building resistance against the insecticides.

The disease prediction tool should also help policymakers and health officials prepare in time to deal with looming outbreaks.

Malaria was selected as the first disease to study because of its severe effects but the model might also be adapted to other diseases, the report's authors said.

KEMRI now has a special unit to carry out research on the interactions between climate change and human health variability, Githure said.

Even before it was proved effective, the new model for malaria prediction was one of the tools selected by the U.N. as an example of practical adaptation to climate change. The U.N. has strongly suggested the model be further developed.

The project was funded by the Climate Change Adaptation in Africa program, Canada’s International Development Research Centre and Britain's Department for International Development.

Isaiah Esipisu is a science writer based in Nairobi.

Isabelle Bourgeault-Tassé | Research asia research news
Further information:
http://www.idrc.ca/en/ev-157409-201-1-DO_TOPIC.html
http://www.researchsea.com

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>