Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Joslin researchers identify new target for treatment of type 2 diabetes and prediabetes

23.08.2011
Researchers at the Joslin Diabetes Center have shown that an enzyme found in the mitochondria of cells is decreased in the skeletal muscle of those with diabetes, a finding that could lead to the development of drugs to boost the activity of this enzyme in an effort to fight the disease.

A paper in published online today in the Proceedings of the National Academy of Sciences, showed that the enzyme, Sirt3, is decreased in the skeletal muscle of humans and animals with diabetes by at least half, compared to those without diabetes and that this may contribute to development of insulin resistance, one of the earliest manifestations of the disease. Sirt3 is found in the mitochondria, the power producers of cells that convert energy into usable forms.

"Ours is perhaps the first study to understand what is going wrong in the mitochondria of those with diabetes," said senior author C. Ronald Kahn, M.D., Head of the Joslin Section on Integrative Physiology and Metabolism and the Mary K. Iacocca Professor of Medicine at Harvard Medical School. "Many studies have shown that the mitochondria don't work well in those with diabetes. This points to a cause of why they don't work well."

Dr. Kahn said the study sought to look at how decreased Sirt3 levels might affect the metabolism of cells, particularly how it could affect insulin action in cells. "We know that one of the hallmarks of early diabetes is insulin resistance in muscle, but we didn't know what caused it," he said.

He said the study showed that when Sirt3 levels are low, as they are in the case of diabetes, the mitochondria of the cells are not as efficient in energy metabolism as they should be.

When the mitochondria become inefficient, they generate what are known as reactive oxygen species (ROS), chemically reactive molecules containing oxygen, which create insulin resistance in the muscles, he said.

"This is the first time this has been shown," Dr. Kahn said.

The goal for the future will be to find ways to restore levels of Sirt3 or increase the activity of the existing Sirt3, perhaps with a drug, in a bid to improve insulin resistance in the muscle and improve muscle metabolism, he said.

"It is a new target," he said.

Dr. Kahn noted that this study is one of the first demonstrations of a single defect that could affect mitochondrial metabolism and insulin signaling in the muscle.

"In further studies we will try to understand what proteins Sirt3 acts on," he said.

He noted that one of the earliest hallmarks of diabetes is insulin resistance in the skeletal muscle. As a result, a drug to boost Sirt3 levels could be useful in the treatment of prediabetes or in those newly diagnosed with the disease, he said.

"Agents which increase Sirt3 activity could, therefore, potentially reverse at least some of the adverse effects of type 2 diabetes," the paper concludes.

Co-authors included Enxuan Jing, lead author, as well as Brice Emanuelli, Jeremie Boucher and Kevin Lee, all of Joslin; Matthew D. Hirschey and Eric M. Verdin, both of Gladstone Institute of Virology and Immunology and the University of California, San Francisco; and David Lombard, formerly of the Department of Genetics at Harvard Medical School and currently at the Department of Pathology and Institute of Gerontology at the University of Michigan.

Dr. Verdin noted that by "uncovering the multi-faceted role of SIRT3, we are laying important groundwork to better combat this widespread disease at the cellular level."

The study was supported by research grants to Kahn and Verdin as well as a grant from the Ellison Foundation and the Mary K. Iacocca Professorship. The study also received support from the Joslin DERC cores laboratories.

Jeffrey Bright | EurekAlert!
Further information:
http://www.joslin.org

More articles from Health and Medicine:

nachricht Biofilm discovery suggests new way to prevent dangerous infections
23.05.2017 | University of Texas at Austin

nachricht Another reason to exercise: Burning bone fat -- a key to better bone health
19.05.2017 | University of North Carolina Health Care

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>