Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Johns Hopkins researchers track down protein responsible for chronic rhinosinusitis with polyps

24.11.2009
New target may eventually help doctors treat often intractable disease

A protein known to stimulate blood vessel growth has now been found to be responsible for the cell overgrowth in the development of polyps that characterize one of the most severe forms of sinusitis, a study by Johns Hopkins researchers suggests. The finding gives scientists a new target for developing novel therapies to treat this form of the disease, which typically resists all current treatments.

Chronic sinusitis, a constant irritation and swelling of the nasal passages, is a common condition thought to affect about one out of every six people. This problem has several forms with a range of severities. One of the most severe forms produces polyps, overgrowths of unhealthy sinus tissue that can block the nose and sinus passages and make breathing through the nose difficult or impossible. This often results in pain, swelling, and an increase in infections. Though researchers aren't sure how many people have this subtype, it's estimated to affect between 15 and 30 percent of sinusitis patients.

"This type of sinusitis isn't subtle—you can spot the patients with polyps from across the room. They're breathing through their mouths, they talk with nasal voices, they're constantly sniffling, and their faces are swollen," says Jean Kim, M.D., Ph.D., assistant professor in the Departments of Otolaryngology and Allergy and Clinical Immunology at the Johns Hopkins University School of Medicine, and a researcher at the Johns Hopkins Allergy and Asthma Center at the Johns Hopkins Bayview Medical Center.

Kim explains that surgery to remove the polyps is one of the most common treatments for this disease. However, nasal and sinus polyps in these patients almost always regrow. "Once the patient has entered the cycle of growing polyps, it's very hard to get out," she says. Another common treatment is oral steroids, but these drugs are fraught with many harmful side effects and also only temporarily treat the disease.

She and her Johns Hopkins colleagues have long studied sinusitis, often growing sinus cells isolated from patients in petri dishes. After noticing that cells from patients with polyps typically multiplied faster than cells from normal patients, the researchers speculated that cells from polyp patients might be producing extra amounts of some type of growth factor, a protein that encourages cell growth.

To identify which growth factor might be to blame, the researchers had sinusitis patients with and without polyps rinse their sinus passages with a wash solution, then tested the runoff for the presence of various growth factors. They found that solution from patients with polyps contained high amounts of a substance called vascular endothelial growth factor, or VEGF, a protein important for normal blood vessel growth that also seems to play a key role in a variety of diseases, including cancer. The more VEGF they found in a cell culture, the faster those cells grew.

To further examine whether this protein is present not only in the sinus passages but also in the sinus tissue, Kim and her colleagues used a stain that highlights VEGF on sinus tissue removed from polyp-producing patients and those with other types of sinusitis. The stained tissue from polyp patients "lit up very dramatically, like a city skyline," Kim says, while the tissue from other patients showed little to no staining.

Though these results confirmed that the sinuses of patients with polyps were overproducing VEGF, the researchers still weren't sure that VEGF was instigating cell overgrowth seen in polyps. Looking for a cause-and-effect relationship, Kim and her team treated cells isolated from sinusitis patients with agents that inhibit VEGF production and action. The cells from polyp-producing patients slowed their growth rate to match that of normal patients.

"It's a strong indicator that VEGF is indeed responsible for the over-exuberant cell growth that contributes to polyp development," Kim says.

Her findings, published in the Dec. 1 American Journal of Respiratory and Critical Care Medicine, suggest that doctors may eventually treat sinusitis in patients with polyps using therapies that reduce VEGF in sinus tissues. "In the future, we might have a nasal spray with an anti-VEGF agent in it," she proposes.

The results also suggest a new way of predicting which patients will go on to develop polyps. They might also simplify tracking the progression of the disease, a process which now relies on repeated CT-scans, which expose patients to radiation. Since many patients with polyps already use sinus washes to ease their symptoms, doctors may be able to use any VEGF present in the runoff from these washes as a marker for the disease and its severity.

Other researchers who participated in this study include Hyun Sil Lee, Ph.D., and Allen Myers, Ph.D.

For more information, go to:
http://www.hopkinsmedicine.org/otolaryngology/our_team/faculty/kim.html
http://www.hopkinsmedicine.org/allergy/AAC.html

Christen Brownlee | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Health and Medicine:

nachricht Second cause of hidden hearing loss identified
20.02.2017 | Michigan Medicine - University of Michigan

nachricht Prospect for more effective treatment of nerve pain
20.02.2017 | Universität Zürich

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>