Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Johns Hopkins researchers track down protein responsible for chronic rhinosinusitis with polyps

24.11.2009
New target may eventually help doctors treat often intractable disease

A protein known to stimulate blood vessel growth has now been found to be responsible for the cell overgrowth in the development of polyps that characterize one of the most severe forms of sinusitis, a study by Johns Hopkins researchers suggests. The finding gives scientists a new target for developing novel therapies to treat this form of the disease, which typically resists all current treatments.

Chronic sinusitis, a constant irritation and swelling of the nasal passages, is a common condition thought to affect about one out of every six people. This problem has several forms with a range of severities. One of the most severe forms produces polyps, overgrowths of unhealthy sinus tissue that can block the nose and sinus passages and make breathing through the nose difficult or impossible. This often results in pain, swelling, and an increase in infections. Though researchers aren't sure how many people have this subtype, it's estimated to affect between 15 and 30 percent of sinusitis patients.

"This type of sinusitis isn't subtle—you can spot the patients with polyps from across the room. They're breathing through their mouths, they talk with nasal voices, they're constantly sniffling, and their faces are swollen," says Jean Kim, M.D., Ph.D., assistant professor in the Departments of Otolaryngology and Allergy and Clinical Immunology at the Johns Hopkins University School of Medicine, and a researcher at the Johns Hopkins Allergy and Asthma Center at the Johns Hopkins Bayview Medical Center.

Kim explains that surgery to remove the polyps is one of the most common treatments for this disease. However, nasal and sinus polyps in these patients almost always regrow. "Once the patient has entered the cycle of growing polyps, it's very hard to get out," she says. Another common treatment is oral steroids, but these drugs are fraught with many harmful side effects and also only temporarily treat the disease.

She and her Johns Hopkins colleagues have long studied sinusitis, often growing sinus cells isolated from patients in petri dishes. After noticing that cells from patients with polyps typically multiplied faster than cells from normal patients, the researchers speculated that cells from polyp patients might be producing extra amounts of some type of growth factor, a protein that encourages cell growth.

To identify which growth factor might be to blame, the researchers had sinusitis patients with and without polyps rinse their sinus passages with a wash solution, then tested the runoff for the presence of various growth factors. They found that solution from patients with polyps contained high amounts of a substance called vascular endothelial growth factor, or VEGF, a protein important for normal blood vessel growth that also seems to play a key role in a variety of diseases, including cancer. The more VEGF they found in a cell culture, the faster those cells grew.

To further examine whether this protein is present not only in the sinus passages but also in the sinus tissue, Kim and her colleagues used a stain that highlights VEGF on sinus tissue removed from polyp-producing patients and those with other types of sinusitis. The stained tissue from polyp patients "lit up very dramatically, like a city skyline," Kim says, while the tissue from other patients showed little to no staining.

Though these results confirmed that the sinuses of patients with polyps were overproducing VEGF, the researchers still weren't sure that VEGF was instigating cell overgrowth seen in polyps. Looking for a cause-and-effect relationship, Kim and her team treated cells isolated from sinusitis patients with agents that inhibit VEGF production and action. The cells from polyp-producing patients slowed their growth rate to match that of normal patients.

"It's a strong indicator that VEGF is indeed responsible for the over-exuberant cell growth that contributes to polyp development," Kim says.

Her findings, published in the Dec. 1 American Journal of Respiratory and Critical Care Medicine, suggest that doctors may eventually treat sinusitis in patients with polyps using therapies that reduce VEGF in sinus tissues. "In the future, we might have a nasal spray with an anti-VEGF agent in it," she proposes.

The results also suggest a new way of predicting which patients will go on to develop polyps. They might also simplify tracking the progression of the disease, a process which now relies on repeated CT-scans, which expose patients to radiation. Since many patients with polyps already use sinus washes to ease their symptoms, doctors may be able to use any VEGF present in the runoff from these washes as a marker for the disease and its severity.

Other researchers who participated in this study include Hyun Sil Lee, Ph.D., and Allen Myers, Ph.D.

For more information, go to:
http://www.hopkinsmedicine.org/otolaryngology/our_team/faculty/kim.html
http://www.hopkinsmedicine.org/allergy/AAC.html

Christen Brownlee | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Health and Medicine:

nachricht NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures
17.11.2017 | National Institute of Standards and Technology (NIST)

nachricht High speed video recording precisely measures blood cell velocity
15.11.2017 | ITMO University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>