Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jekyll into Hyde: Breathing auto emissions turns HDL cholesterol from 'good' to 'bad'

16.05.2013
Academic researchers have found that breathing motor vehicle emissions triggers a change in high-density lipoprotein (HDL) cholesterol, altering its cardiovascular protective qualities so that it actually contributes to clogged arteries.

In addition to changing HDL from "good" to "bad," the inhalation of emissions activates other components of oxidation, the early cell and tissue damage that causes inflammation, leading to hardening of the arteries, according to the research team, which included scientists from UCLA and other institutions.

The findings of this early study, done in mice, are available in the online edition of the journal Arteriosclerosis, Thrombosis and Vascular Biology, a publication of the American Heart Association, and will appear in the journal's June print edition.

Emission particles such as those from vehicles are major pollutants in urban settings. These particles are coated in chemicals that are sensitive to free radicals, which have been known to cause oxidation. The mechanism behind how this leads to atherosclerosis, however, has not been well understood.

In the study, the researchers found that after two weeks of exposure to vehicle emissions, mice showed oxidative damage in the blood and liver — damage that was not reversed after a subsequent week of receiving filtered air. Altered HDL cholesterol may play a key role in this damaging process, they said.

"This is the first study showing that air pollutants promote the development of dysfunctional, pro-oxidative HDL cholesterol and the activation of an internal oxidation pathway, which may be one of the mechanisms in how air pollution can exacerbate clogged arteries that lead to heart disease and stroke," said senior author Dr. Jesus Araujo, an associate professor of medicine and director of environmental cardiology at the David Geffen School of Medicine at UCLA.

For the study, one group of mice was exposed to vehicle emissions for two weeks and then filtered air for one week, a second was exposed to two weeks of emissions with no filtered air, and a third was exposed to only clean, filtered air for two weeks. This part of the collaborative research took place at the Northlake Exposure Facility at the University of Washington, headed by study author Michael E. Rosenfeld.

"The biggest surprise was finding that after two weeks of exposure to vehicle emissions, one week of breathing clean filtered air was not enough to reverse the damage," said Rosenfeld, a professor of environmental and occupational health sciences and pathology at the University of Washington.

Mice were exposed for a few hours, several days a week, to whole diesel exhaust at a particulate mass concentration within the range of what mine workers usually are exposed to.

After the exposures, UCLA scientists analyzed blood and tissue specimens and checked to see if the protective antioxidant and anti-inflammatory properties of HDL, known as "good" cholesterol, were still intact. They used special analytical laboratory procedures originally developed by study author Mohamad Navab at UCLA to evaluate how "good" or "bad" HDL had become. The team found that many of the positive properties of HDL were markedly altered after the air-pollutant exposure.

For example, the HDL of mice exposed to two weeks of vehicle emissions, including those that received a subsequent week of filtered air, had a much-decreased ability to protect against oxidation and inflammation induced by low-density lipoprotein (LDL) cholesterol, known as "bad" cholesterol, than the mice that had only been exposed to filtered air.

According to researchers, without HDL's ability to inhibit LDL, along with other factors, the oxidation process may run unchecked. Moreover, not only was the HDL of the mice exposed to diesel exhaust unable to protect against oxidation, but, in fact, it further enhanced the oxidative process and even worked in tandem with the LDL to promote even more oxidative damage.

Researchers also found a twofold to threefold increase of additional oxidation products in the blood of mice exposed to vehicle emissions, as well as activation of oxidation pathways in the liver. The degree of HDL dysfunction was correlated with the level of these oxidation markers.

"We suggest that people try to limit their exposure to air pollutants, as they may induce damage that starts during the exposure and continues long after it ends," said first author Fen Yin, a researcher in the division of cardiology at the Geffen School of Medicine.

The current research builds on the team's previous findings that ambient ultrafine particles commonly found in air pollution, including vehicle emissions, enhance the build-up of cholesterol plaques in the arteries and that HDL may play a role.

"Our research helps confirm that the functionality of HDL may be as important to check as the levels," said study author Dr. Alan Fogelman, executive chair of the department of medicine and director of the atherosclerosis research unit at the Geffen School of Medicine.

The study was funded by the National Institute of Environmental Health Sciences (RO1 Award ESO16959); the National Heart, Lung and Blood Institute; and the U.S. Environmental Protection Agency.

Additional authors included Akeem Lawal, Jerry Ricks, Julie R. Fox and Tim Larson.

For more news, visit the UCLA Newsroom and follow us on Twitter.

Rachel Champeau | EurekAlert!
Further information:
http://www.mednet.ucla.edu

Further reports about: Breathing HDL HDL cholesterol LDL UCLA air pollutant environmental risk oxidative damage

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>