Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jekyll into Hyde: Breathing auto emissions turns HDL cholesterol from 'good' to 'bad'

16.05.2013
Academic researchers have found that breathing motor vehicle emissions triggers a change in high-density lipoprotein (HDL) cholesterol, altering its cardiovascular protective qualities so that it actually contributes to clogged arteries.

In addition to changing HDL from "good" to "bad," the inhalation of emissions activates other components of oxidation, the early cell and tissue damage that causes inflammation, leading to hardening of the arteries, according to the research team, which included scientists from UCLA and other institutions.

The findings of this early study, done in mice, are available in the online edition of the journal Arteriosclerosis, Thrombosis and Vascular Biology, a publication of the American Heart Association, and will appear in the journal's June print edition.

Emission particles such as those from vehicles are major pollutants in urban settings. These particles are coated in chemicals that are sensitive to free radicals, which have been known to cause oxidation. The mechanism behind how this leads to atherosclerosis, however, has not been well understood.

In the study, the researchers found that after two weeks of exposure to vehicle emissions, mice showed oxidative damage in the blood and liver — damage that was not reversed after a subsequent week of receiving filtered air. Altered HDL cholesterol may play a key role in this damaging process, they said.

"This is the first study showing that air pollutants promote the development of dysfunctional, pro-oxidative HDL cholesterol and the activation of an internal oxidation pathway, which may be one of the mechanisms in how air pollution can exacerbate clogged arteries that lead to heart disease and stroke," said senior author Dr. Jesus Araujo, an associate professor of medicine and director of environmental cardiology at the David Geffen School of Medicine at UCLA.

For the study, one group of mice was exposed to vehicle emissions for two weeks and then filtered air for one week, a second was exposed to two weeks of emissions with no filtered air, and a third was exposed to only clean, filtered air for two weeks. This part of the collaborative research took place at the Northlake Exposure Facility at the University of Washington, headed by study author Michael E. Rosenfeld.

"The biggest surprise was finding that after two weeks of exposure to vehicle emissions, one week of breathing clean filtered air was not enough to reverse the damage," said Rosenfeld, a professor of environmental and occupational health sciences and pathology at the University of Washington.

Mice were exposed for a few hours, several days a week, to whole diesel exhaust at a particulate mass concentration within the range of what mine workers usually are exposed to.

After the exposures, UCLA scientists analyzed blood and tissue specimens and checked to see if the protective antioxidant and anti-inflammatory properties of HDL, known as "good" cholesterol, were still intact. They used special analytical laboratory procedures originally developed by study author Mohamad Navab at UCLA to evaluate how "good" or "bad" HDL had become. The team found that many of the positive properties of HDL were markedly altered after the air-pollutant exposure.

For example, the HDL of mice exposed to two weeks of vehicle emissions, including those that received a subsequent week of filtered air, had a much-decreased ability to protect against oxidation and inflammation induced by low-density lipoprotein (LDL) cholesterol, known as "bad" cholesterol, than the mice that had only been exposed to filtered air.

According to researchers, without HDL's ability to inhibit LDL, along with other factors, the oxidation process may run unchecked. Moreover, not only was the HDL of the mice exposed to diesel exhaust unable to protect against oxidation, but, in fact, it further enhanced the oxidative process and even worked in tandem with the LDL to promote even more oxidative damage.

Researchers also found a twofold to threefold increase of additional oxidation products in the blood of mice exposed to vehicle emissions, as well as activation of oxidation pathways in the liver. The degree of HDL dysfunction was correlated with the level of these oxidation markers.

"We suggest that people try to limit their exposure to air pollutants, as they may induce damage that starts during the exposure and continues long after it ends," said first author Fen Yin, a researcher in the division of cardiology at the Geffen School of Medicine.

The current research builds on the team's previous findings that ambient ultrafine particles commonly found in air pollution, including vehicle emissions, enhance the build-up of cholesterol plaques in the arteries and that HDL may play a role.

"Our research helps confirm that the functionality of HDL may be as important to check as the levels," said study author Dr. Alan Fogelman, executive chair of the department of medicine and director of the atherosclerosis research unit at the Geffen School of Medicine.

The study was funded by the National Institute of Environmental Health Sciences (RO1 Award ESO16959); the National Heart, Lung and Blood Institute; and the U.S. Environmental Protection Agency.

Additional authors included Akeem Lawal, Jerry Ricks, Julie R. Fox and Tim Larson.

For more news, visit the UCLA Newsroom and follow us on Twitter.

Rachel Champeau | EurekAlert!
Further information:
http://www.mednet.ucla.edu

Further reports about: Breathing HDL HDL cholesterol LDL UCLA air pollutant environmental risk oxidative damage

More articles from Health and Medicine:

nachricht Hot cars can hit deadly temperatures in as little as one hour
24.05.2018 | Arizona State University

nachricht 3D images of cancer cells in the body: Medical physicists from Halle present new method
16.05.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>