Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

JDRF-funded research shows some may be protected from diabetic eye disease

12.06.2012
Researchers at Joslin Diabetes Center hope to use experiences of people with long-term type 1 diabetes to benefit others

Researchers at Joslin Diabetes Center, supported by JDRF, have completed a study of 158 people who have lived with type 1 diabetes (T1D) for 50 years or more with eye examinations at Joslin over many decades of follow-up, and have concluded that a high proportion of this unique group of patients developed little to no diabetic eye disease over time.

The study focuses on a group of patients known as "50-year Medalists," and was funded by JDRF in support of its efforts to improve the lives of people with T1D by reducing or eliminating the impact of its complications. Their results, which researchers hope will lead to a means to prevent or slow the progression of the disease, were presented at the 72nd American Diabetes Association's (ADA) Scientific Sessions in Philadelphia this past weekend.

Diabetic retinopathy (DR) refers to a number of vision abnormalities that are all related to damage to the blood vessels in the eye caused by high blood glucose levels. It is the most common and one of the most serious complications of diabetes, affecting nearly 90 percent of people who have had T1D for at least 20 years. Although some treatment options exist for those with more advanced forms of the disease, DR remains the leading cause of vision loss among working age adults in the United States and other developed countries worldwide. The fact that approximately 40 percent of Medalists are relatively unaffected by such a common complication led researchers in this study to evaluate whether these Medalists developed DR and then experienced regression or lack of progression, or never developed significant DR at all.

"Joslin's attempt to characterize diabetic retinopathy is an important starting point for preventing or treating this complication of T1D," said Helen Nickerson, JDRF's senior scientific program manager of complications therapies. "The understanding that these Medalists have been relatively unaffected by such a common complication leads us to infer that there may be biological or genetic protective factors that could be utilized to benefit other people with type 1 diabetes."

"The results we received from looking at this special group of patients led to some very interesting findings," said Dr. Jennifer Sun, co-investigator on the study at Joslin. "In Medalists who did not develop advanced DR, there was no evidence of substantial DR regression, but the progression of retinopathy seems to slow after about four years in comparison to those who do develop advanced DR. Further, after about two decades, the process of DR worsening essentially seems to halt. It is this halting of disease progression that we will be studying as we move forward to identify the factors that result in protection against long-term complications in the 50-year Medalists."

The Medalist program was initially conceived by Dr. Eliot P. Joslin as an incentive for those who had lived with T1D for 25 years, rewarding them for commitment to good self-management techniques. Due to the advancements in treatment therapies supported by organizations like JDRF and Joslin Diabetes Center, today the Medalist program recognizes people who have lived with T1D for 50 and even 75 years. In order to be selected as a 50-year Medalist, like the patients involved in this study, a person must have lived with documented insulin-dependent diabetes for at least 50 years.

About JDRF
JDRF is the leading global organization focused on type 1 diabetes (T1D) research. Driven by passionate, grassroots volunteers connected to children, adolescents, and adults with this disease, JDRF is the largest charitable supporter of T1D research. The goal of JDRF is to improve the lives of all people affected by T1D by accelerating progress on the most promising opportunities for curing, better treating, and preventing T1D. JDRF collaborates with a wide spectrum of partners who share this goal.

Since its founding in 1970, JDRF has awarded more than $1.6 billion to T1D research. More than 80 percent of JDRF's expenditures directly support research and research-related education. Past JDRF research efforts have helped to significantly improve the care of people with this disease, and have expanded the critical scientific understanding of T1D. JDRF will not rest until T1D is fully conquered. For more information, please visit www.jdrf.org.

Michael Cook | EurekAlert!
Further information:
http://www.jdrf.org

Further reports about: Diabetes JDRF Joslin T1D blood glucose level blood vessel type 1 diabetes

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Organ-on-a-chip mimics heart's biomechanical properties

23.02.2017 | Health and Medicine

Light-driven reaction converts carbon dioxide into fuel

23.02.2017 | Life Sciences

Oil and gas wastewater spills alter microbes in West Virginia waters

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>