Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

JDRF-funded research shows some may be protected from diabetic eye disease

12.06.2012
Researchers at Joslin Diabetes Center hope to use experiences of people with long-term type 1 diabetes to benefit others

Researchers at Joslin Diabetes Center, supported by JDRF, have completed a study of 158 people who have lived with type 1 diabetes (T1D) for 50 years or more with eye examinations at Joslin over many decades of follow-up, and have concluded that a high proportion of this unique group of patients developed little to no diabetic eye disease over time.

The study focuses on a group of patients known as "50-year Medalists," and was funded by JDRF in support of its efforts to improve the lives of people with T1D by reducing or eliminating the impact of its complications. Their results, which researchers hope will lead to a means to prevent or slow the progression of the disease, were presented at the 72nd American Diabetes Association's (ADA) Scientific Sessions in Philadelphia this past weekend.

Diabetic retinopathy (DR) refers to a number of vision abnormalities that are all related to damage to the blood vessels in the eye caused by high blood glucose levels. It is the most common and one of the most serious complications of diabetes, affecting nearly 90 percent of people who have had T1D for at least 20 years. Although some treatment options exist for those with more advanced forms of the disease, DR remains the leading cause of vision loss among working age adults in the United States and other developed countries worldwide. The fact that approximately 40 percent of Medalists are relatively unaffected by such a common complication led researchers in this study to evaluate whether these Medalists developed DR and then experienced regression or lack of progression, or never developed significant DR at all.

"Joslin's attempt to characterize diabetic retinopathy is an important starting point for preventing or treating this complication of T1D," said Helen Nickerson, JDRF's senior scientific program manager of complications therapies. "The understanding that these Medalists have been relatively unaffected by such a common complication leads us to infer that there may be biological or genetic protective factors that could be utilized to benefit other people with type 1 diabetes."

"The results we received from looking at this special group of patients led to some very interesting findings," said Dr. Jennifer Sun, co-investigator on the study at Joslin. "In Medalists who did not develop advanced DR, there was no evidence of substantial DR regression, but the progression of retinopathy seems to slow after about four years in comparison to those who do develop advanced DR. Further, after about two decades, the process of DR worsening essentially seems to halt. It is this halting of disease progression that we will be studying as we move forward to identify the factors that result in protection against long-term complications in the 50-year Medalists."

The Medalist program was initially conceived by Dr. Eliot P. Joslin as an incentive for those who had lived with T1D for 25 years, rewarding them for commitment to good self-management techniques. Due to the advancements in treatment therapies supported by organizations like JDRF and Joslin Diabetes Center, today the Medalist program recognizes people who have lived with T1D for 50 and even 75 years. In order to be selected as a 50-year Medalist, like the patients involved in this study, a person must have lived with documented insulin-dependent diabetes for at least 50 years.

About JDRF
JDRF is the leading global organization focused on type 1 diabetes (T1D) research. Driven by passionate, grassroots volunteers connected to children, adolescents, and adults with this disease, JDRF is the largest charitable supporter of T1D research. The goal of JDRF is to improve the lives of all people affected by T1D by accelerating progress on the most promising opportunities for curing, better treating, and preventing T1D. JDRF collaborates with a wide spectrum of partners who share this goal.

Since its founding in 1970, JDRF has awarded more than $1.6 billion to T1D research. More than 80 percent of JDRF's expenditures directly support research and research-related education. Past JDRF research efforts have helped to significantly improve the care of people with this disease, and have expanded the critical scientific understanding of T1D. JDRF will not rest until T1D is fully conquered. For more information, please visit www.jdrf.org.

Michael Cook | EurekAlert!
Further information:
http://www.jdrf.org

Further reports about: Diabetes JDRF Joslin T1D blood glucose level blood vessel type 1 diabetes

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>