Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

JDRF clinical panel recommends next steps for artificial pancreas clinical testing

11.11.2010
Experts present at FDA-NIH workshop

Diabetes experts at a meeting convened by the U.S. Food and Drug Administration (FDA) and the National Institutes of Health (NIH) took the next step in advancing efforts toward the development of an artificial pancreas: putting forth clinical recommendations to ensure the safe and effective testing of artificial pancreas technology in real-life situations.

We are pleased at today's meeting there was a strong consensus among leading clinicians, researchers and industry leaders regarding the path toward outpatient studies for both low-glucose suspend and artificial pancreas systems.

Even with treatments available today, tight blood sugar control remains a challenge and daily struggle for those living with type 1 diabetes. In fact, the majority of people living with the disease are not achieving recommended target levels. "An artificial pancreas, essentially a device that would both measure blood sugar and dispense appropriate amounts of insulin to keep levels in optimal range, would take much of the guesswork out of daily management of the disease," said Dr. Aaron Kowalski, Assistant Vice President of Treatment Therapies at JDRF. "In the long-run, controlled blood sugar levels will help to lessen or avert the devastating complications from type 1 diabetes."

To date, artificial pancreas devices have been successfully tested in controlled inpatient or hospital settings, demonstrating the potential for this technology to improve blood sugar control. Now it must be tested safely in real-world conditions. And clear and reasonable regulatory guidelines must be established to ensure that the upcoming studies advance the technology to reach patients as soon as possible.

"We believe a safe and effective first generation artificial pancreas system is possible with today's technology, even as we continue to encourage development of improved devices. Experts at today's FDA workshop outlined a clear path forward to safely speed the development and delivery of artificial pancreas systems to patients," said Jeffrey Brewer, President and CEO of JDRF.

To help advance these efforts, JDRF formed a Clinical Panel of internationally renowned leaders in the diabetes field to make recommendations to FDA on key clinical steps and issues critical to the advancement of studies of these systems outside of the hospital. Panel members speaking at today's workshop included David Nathan, Director, Clinical Research Center and Diabetes Center at Massachusetts General Hospital and Professor of Medicine, Harvard Medical School; and William Tamborlane, Professor and Chief of Pediatric Endocrinology and Diabetes, Yale University School of Medicine.

The panel developed a series of clinical recommendations that were shared at today's meeting. They were based on key areas addressed by the FDA, NIH, JDRF, clinicians and industry. First, the recommendations addressed questions on how should studies on artificial pancreas systems move safely from inpatient (hospital) settings to outpatient (real-world) testing. Second, the panel identified which subset of patients should be considered when testing artificial pancreas systems. The third area focused on how to ensure the safety of patients participating in the studies and eventually for everyday use. Lastly, the panel identified what outcomes should be measured in studies to demonstrate the safety and effectiveness of the device.

A summary of the panel's recommendations is available here. A full report by the panel will be forthcoming.

According to panel chair Robert Sherwin, M.D., Yale University, "The panel believes, with certain safeguards, artificial pancreas systems can be safely tested in real world settings."

"The incidence of type 1 diabetes is on the rise. Today's tools to manage the disease are insufficient. We have the technology at our disposal to make an artificial pancreas work. Now it's time to move forward quickly to define the regulatory pathway so final studies can be completed and better technologies can be made available to adults and children struggling with this difficult disease," added Mr. Brewer.

About JDRF's Artificial Pancreas Project

JDRF launched the Artificial Pancreas Project in 2005 to speed the development of automated diabetes management systems. A self-regulating system, the artificial pancreas would be able to sense sugar levels continuously and automatically release the right amount of insulin at the right times – eliminating the need for multiple blood tests, insulin injections and therefore lifting the daily burden associated with managing diabetes.

Since that time, JDRF has supported a number of initiatives that have advanced progress toward the development of an artificial pancreas. This has included the formation of the Artificial Pancreas Consortium, a group of university-based mathematicians, engineers, and diabetes experts to develop the computer algorithms that are needed to connect the devices needed to form a closed-loop system.

In addition to the consortium, JDRF has collaborated with several industry partners to develop a first-generation artificial pancreas system, as well as better and faster-acting insulin products, a key component of developing a safe and effective artificial pancreas system.

More information about JDRF's Artificial Pancreas Project can be found online at www.jdrf.org/artificialpancreasproject. The site includes information for people with type 1 diabetes about research leading to the development of an artificial pancreas, as well as interactive tools, project timelines, chats with researchers, and access to information about clinical trials.

About JDRF

JDRF is the leader in research leading to a cure for type 1 diabetes in the world. It sets the global agenda for diabetes research, and is the largest charitable funder and advocate of diabetes science worldwide.

The mission of JDRF is to find a cure for diabetes and its complications through the support of research. Type 1 diabetes is an autoimmune disease that strikes children and adults suddenly, and can be fatal. Until a cure is found, people with type 1 diabetes have to test their blood sugar and give themselves insulin injections multiple times or use a pump – each day, every day of their lives. And even with that intensive care, insulin is not a cure for diabetes, nor does it prevent its eventual and devastating complications, which may include kidney failure, blindness, heart disease, stroke, and amputation.

Since its founding in 1970 by parents of children with type 1 diabetes, JDRF has awarded more than $1.5 billion to diabetes research, including more than $107 million last year. More than 80 percent of JDRF's expenditures directly support research and research-related education. For more information, please visit www.jdrf.org.

Joana Casas | EurekAlert!
Further information:
http://www.jdrf.org

More articles from Health and Medicine:

nachricht Cholesterol-lowering drugs may fight infectious disease
22.08.2017 | Duke University

nachricht Once invincible superbug squashed by 'superteam' of antibiotics
22.08.2017 | University at Buffalo

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>