Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The Japanese traditional therapy, honokiol, blocks key protein in inflammatory brain damage

Microglia are the first line defence of the brain and are constantly looking for infections to fight off. Overactive microglia can cause uncontrolled inflammation within the brain, which can in turn lead to neuronal damage.

New research published in BioMed Central's open access journal Journal of Neuroinflammation shows that, honokiol (HNK) is able to down-regulate the production of pro-inflammatory cytokines and inflammatory enzymes in activated microglia via Klf4, a protein known to regulate DNA.

Scientists from the National Brain Research Centre, Manesar, India, used lipopolysaccharide (LPS), a molecule present on the surface of bacteria, to stimulate an immune response from microglia cells. LPS mimics the effect of a bacterial infection and the microglia cells spring into action, releasing proinflammatory cytokines, such as TNFa.

Activation of microglia also stimulates the production of nitric oxide (NO) and Cox-2, which co-ordinate the immune response, leading to inflammation. However uncontrolled inflammation can lead to neuronal death and permanent brain damage. Microglial inflammation is also observed in several neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, and multiple sclerosis.

The team led by Dr Anirban Basu found that the inflammatory response was mediated by Klf4, a 'transcription' factor which binds directly to DNA to enhance or impede gene expression. Treating microglia with HNK reduced their activation and HNK treated cells secreted less cytokines in response to LPS. HNK also down regulated the activity of Klf4 (and pNF-kb - another regulator of inflammation).

Dr Basu suggested that HNK down regulates Klf4 which in turn down regulates NO and Cox-2 production. He said, "HNK can easily move across the blood brain barrier and we found that HNK reduced levels of pNF-kb and Klf4 as well as the number of activated microglia in the brains of LPS treated mice."

He continued, "Our work with HNK has found that Klf4 is an important regulator of inflammation. Both HNK and Klf4 may be important not only in regulating inflammation due to infection, but may also have applications in other diseases which affect the brain and nervous system."

Notes to Editors

1. Therapeutic targeting of Kruppel-like factor 4 abrogates microglial activation
Deepak K Kaushik, Rupanjan Mukhopadhyay, Kanhaiya L Kumawat, Malvika Gupta and Anirban Basu

Journal of Neuroinflammation (in press)

Please name the journal in any story you write. If you are writing for the web, please link to the article. All articles are available free of charge, according to BioMed Central's open access policy.

Article citation and URL available on request on the day of publication.

2. Journal of Neuroinflammation is an open access, peer-reviewed online journal that focuses on innate immunological responses of the nervous system, involving microglia, astrocytes, cytokines, chemokines, and related molecular processes.

3. BioMed Central ( is an STM (Science, Technology and Medicine) publisher which has pioneered the open access publishing model. All peer-reviewed research articles published by BioMed Central are made immediately and freely accessible online, and are licensed to allow redistribution and reuse. BioMed Central is part of Springer Science+Business Media, a leading global publisher in the STM sector.

Dr. Hilary Glover | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>