Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Japanese traditional therapy, honokiol, blocks key protein in inflammatory brain damage

19.03.2012
Microglia are the first line defence of the brain and are constantly looking for infections to fight off. Overactive microglia can cause uncontrolled inflammation within the brain, which can in turn lead to neuronal damage.

New research published in BioMed Central's open access journal Journal of Neuroinflammation shows that, honokiol (HNK) is able to down-regulate the production of pro-inflammatory cytokines and inflammatory enzymes in activated microglia via Klf4, a protein known to regulate DNA.

Scientists from the National Brain Research Centre, Manesar, India, used lipopolysaccharide (LPS), a molecule present on the surface of bacteria, to stimulate an immune response from microglia cells. LPS mimics the effect of a bacterial infection and the microglia cells spring into action, releasing proinflammatory cytokines, such as TNFa.

Activation of microglia also stimulates the production of nitric oxide (NO) and Cox-2, which co-ordinate the immune response, leading to inflammation. However uncontrolled inflammation can lead to neuronal death and permanent brain damage. Microglial inflammation is also observed in several neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, and multiple sclerosis.

The team led by Dr Anirban Basu found that the inflammatory response was mediated by Klf4, a 'transcription' factor which binds directly to DNA to enhance or impede gene expression. Treating microglia with HNK reduced their activation and HNK treated cells secreted less cytokines in response to LPS. HNK also down regulated the activity of Klf4 (and pNF-kb - another regulator of inflammation).

Dr Basu suggested that HNK down regulates Klf4 which in turn down regulates NO and Cox-2 production. He said, "HNK can easily move across the blood brain barrier and we found that HNK reduced levels of pNF-kb and Klf4 as well as the number of activated microglia in the brains of LPS treated mice."

He continued, "Our work with HNK has found that Klf4 is an important regulator of inflammation. Both HNK and Klf4 may be important not only in regulating inflammation due to infection, but may also have applications in other diseases which affect the brain and nervous system."

Notes to Editors

1. Therapeutic targeting of Kruppel-like factor 4 abrogates microglial activation
Deepak K Kaushik, Rupanjan Mukhopadhyay, Kanhaiya L Kumawat, Malvika Gupta and Anirban Basu

Journal of Neuroinflammation (in press)

Please name the journal in any story you write. If you are writing for the web, please link to the article. All articles are available free of charge, according to BioMed Central's open access policy.

Article citation and URL available on request on the day of publication.

2. Journal of Neuroinflammation is an open access, peer-reviewed online journal that focuses on innate immunological responses of the nervous system, involving microglia, astrocytes, cytokines, chemokines, and related molecular processes.

3. BioMed Central (http://www.biomedcentral.com/) is an STM (Science, Technology and Medicine) publisher which has pioneered the open access publishing model. All peer-reviewed research articles published by BioMed Central are made immediately and freely accessible online, and are licensed to allow redistribution and reuse. BioMed Central is part of Springer Science+Business Media, a leading global publisher in the STM sector.

Dr. Hilary Glover | EurekAlert!
Further information:
http://www.biomedcentral.com

More articles from Health and Medicine:

nachricht Antibiotic effective against drug-resistant bacteria in pediatric skin infections
17.02.2017 | University of California - San Diego

nachricht Tiny magnetic implant offers new drug delivery method
14.02.2017 | University of British Columbia

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>