Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


ISU researchers develop technique for quick detection of salmonella

In the hours following an outbreak of salmonella, there are many questions. And answers can be hard to find.

Where did the problem start? Can it be contained? Is the sickness likely to spread?

Iowa State University researchers have developed a technique for testing for the presence of salmonella that may give investigators better, faster answers.

The process, developed by Byron Brehm-Stecher, assistant professor in food science and human nutrition, and his graduate student Bledar Bisha, begins with testing the food, in most cases produce, with a strip of adhesive tape.

The tape is applied to the produce, then carefully removed, taking a sample of whatever is on the skin of the produce. That sample is then put on a slide and soaked in a special warm, soapy mixture that contains a genetic marker that binds with salmonella and gives off a fluorescent glow when viewed under an ultraviolet light. Use of this genetic marker approach is called Fluorescent In-Situ Hybridization, or FISH.

The approach can tell investigators if the produce is contaminated with salmonella in about two hours.

"This method is rapid, it's easy, and it's cheap," said Brehm-Stecher.

Current methods of detecting salmonella take one to seven days.

Brehm-Stecher and Bisha call the process "tape-FISH" and note that it could be an important technique for salmonella investigators.

"I think this will be good tool in outbreak investigation and routine surveillance especially since all you need is tape, a heat block, a small centrifuge and a fluorescence microscope," said Brehm-Stecher. "It has the potential to be very portable."

Brehm-Stecher's and Bisha's findings will be published in the journal Applied and Environmental Microbiology, published by the American Society of Microbiology.

Once at a location where an outbreak of salmonella has occurred, investigators can test the produce for contamination. Outbreaks can be due to other factors such as food preparation.

Once investigators find the origin of the salmonella, they can take steps to contain it, said Brehm-Stecher.

Salmonella can be found on produce such as tomatoes, cilantro, peppers, spinach and others. The produce can be contaminated while it is in the fields or during processing. Washing the produce thoroughly can help, but cannot ensure the produce will be safe.

The tape-FISH technique can also be used to test produce that is not suspected of being contaminated, but the volume of produce that would need to be tested may make this impractical. However, the technique could be very valuable as a basic research tool. Researchers could investigate how salmonella and other types of organisms interact on produce surfaces, said Brehm-Stecher.

This is the first application of tape-FISH to salmonella, but the idea came to the ISU researcher while reading about art restoration.

In 2008, Brehm-Stecher read about an Italian group that was using a similar approach to look for bacteria on ancient catacombs. Those researchers were hoping to identify and remove bacteria that were slowly eating away at the relics.

After some classroom discussion with his students, Brehm-Stecher decided that using the FISH on produce could be useful and began researching the idea with Bisha. Together, they were able to apply the method to produce and made several improvements in speed and sensitivity over the existing tape-FISH approach. Brehm-Stecher hopes that his tape-FISH approach can help speed investigations of produce contamination, such as last summer's outbreak of Salmonella Saintpaul, which was eventually traced to imported jalapeno and Serrano peppers.

Byron Brehm-Stecher | EurekAlert!
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>