Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ISU researchers develop technique for quick detection of salmonella

04.02.2009
In the hours following an outbreak of salmonella, there are many questions. And answers can be hard to find.

Where did the problem start? Can it be contained? Is the sickness likely to spread?

Iowa State University researchers have developed a technique for testing for the presence of salmonella that may give investigators better, faster answers.

The process, developed by Byron Brehm-Stecher, assistant professor in food science and human nutrition, and his graduate student Bledar Bisha, begins with testing the food, in most cases produce, with a strip of adhesive tape.

The tape is applied to the produce, then carefully removed, taking a sample of whatever is on the skin of the produce. That sample is then put on a slide and soaked in a special warm, soapy mixture that contains a genetic marker that binds with salmonella and gives off a fluorescent glow when viewed under an ultraviolet light. Use of this genetic marker approach is called Fluorescent In-Situ Hybridization, or FISH.

The approach can tell investigators if the produce is contaminated with salmonella in about two hours.

"This method is rapid, it's easy, and it's cheap," said Brehm-Stecher.

Current methods of detecting salmonella take one to seven days.

Brehm-Stecher and Bisha call the process "tape-FISH" and note that it could be an important technique for salmonella investigators.

"I think this will be good tool in outbreak investigation and routine surveillance especially since all you need is tape, a heat block, a small centrifuge and a fluorescence microscope," said Brehm-Stecher. "It has the potential to be very portable."

Brehm-Stecher's and Bisha's findings will be published in the journal Applied and Environmental Microbiology, published by the American Society of Microbiology.

Once at a location where an outbreak of salmonella has occurred, investigators can test the produce for contamination. Outbreaks can be due to other factors such as food preparation.

Once investigators find the origin of the salmonella, they can take steps to contain it, said Brehm-Stecher.

Salmonella can be found on produce such as tomatoes, cilantro, peppers, spinach and others. The produce can be contaminated while it is in the fields or during processing. Washing the produce thoroughly can help, but cannot ensure the produce will be safe.

The tape-FISH technique can also be used to test produce that is not suspected of being contaminated, but the volume of produce that would need to be tested may make this impractical. However, the technique could be very valuable as a basic research tool. Researchers could investigate how salmonella and other types of organisms interact on produce surfaces, said Brehm-Stecher.

This is the first application of tape-FISH to salmonella, but the idea came to the ISU researcher while reading about art restoration.

In 2008, Brehm-Stecher read about an Italian group that was using a similar approach to look for bacteria on ancient catacombs. Those researchers were hoping to identify and remove bacteria that were slowly eating away at the relics.

After some classroom discussion with his students, Brehm-Stecher decided that using the FISH on produce could be useful and began researching the idea with Bisha. Together, they were able to apply the method to produce and made several improvements in speed and sensitivity over the existing tape-FISH approach. Brehm-Stecher hopes that his tape-FISH approach can help speed investigations of produce contamination, such as last summer's outbreak of Salmonella Saintpaul, which was eventually traced to imported jalapeno and Serrano peppers.

Byron Brehm-Stecher | EurekAlert!
Further information:
http://www.iastate.edu

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>