Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New islet cell transplant procedure offers improved outcomes for patients with type 1 diabetes

20.09.2013
Advanced technique for harvesting insulin-producing cells offers an alternative to transplant surgery

The latest approach to islet transplantation, in which clusters of insulin-producing cells known as islets are transplanted from a donor pancreas into another person's liver, has produced substantially improved results for patients with type 1 diabetes, and may offer a more durable alternative to a whole pancreas transplant.

Participants in the new study received islet cells isolated from the pancreas of organ donors to help their bodies produce insulin, the life-sustaining hormone responsible for absorbing glucose from the blood. The new approach, which allowed the harvested cells a short period of rest prior to transplant, resulted in increased levels of insulin production to the degree that patients were able to discontinue daily insulin injections. Results of the study, conducted by researchers at the Perelman School of Medicine at the University of Pennsylvania, appeared recently in the journal Diabetes.

In the study, investigators used an advanced technique to isolate and harvest islet cells from donor pancreases. Unlike prior methods in which isolated islet cells were immediately transferred to the recipient, the new technique allowed the extracted cells to rest in a controlled environment for three days prior to transplant. Inflammation that occurs when the cells are harvested can often predispose the recipient to rejection after transplantation. However, by allowing the cells to rest, the inflammation – and possibility of rejection – is reduced. Ultimately, the resting period also resulted in a more efficient process by allowing investigators to use fewer islet cells than previous methods which required cells from two or more donor pancreases achieve similar results. Despite fewer islet cells being transplanted, the new approach resulted in significantly improved islet cell function.

"These results show that islet transplantation has become a more promising method for replacing the islet cells in type 1 diabetes patients experiencing severe problems with low blood sugar," said lead author Michael R. Rickels, MD, MS, medical director for the Pancreatic Islet Cell Transplantation Program and associate professor of Medicine in Endocrinology, Diabetes and Metabolism at Penn Medicine. "We've seen positive long-term results with this technique, and are excited to be able to offer the option to our patients, where currently a whole pancreas transplant requiring major surgery is the only available alternative."

The new approach, known as the CIT07 protocol, was developed by the National Institutes of Health and sponsored by the Clinical Islet Transplantation (CIT) Consortium, in which Penn has served as a member since 2004. Under the new protocol, which measures islet cell mass, all patients involved in the study were able to come off insulin therapy and remained so after at least one year with no loss of the transplanted cell mass.

Typically, patients with type 1 diabetes must self-administer multiple injections of insulin per day, or receive it by a continuous infusion from a wearable pump. However, insulin therapy is difficult to calibrate to the body's changing energy needs, and patients are required to frequently check their blood sugar levels and adjust their insulin dosage. Varying levels of insulin in the body often results in low blood sugar (hypoglycemia), which can induce a coma or other medical emergency. Conversely, islet transplantation, when effective, results in natural, internal self-monitoring and adjustment of insulin levels to keep blood sugar levels in a normal range (homeostasis).

"The fact that significantly more transplanted islet cells in the new protocol are able to successfully integrate and continue producing insulin at least one year later compared to prior studies, gives us hope that more type 1 diabetes patients will be able to live full and healthy lives free from the dangers of hypoglycemia and the burden of administering insulin," said senior author and principal investigator Ali Naji, MD, PhD, surgical director of the Kidney and Pancreas Transplant Program at Penn Medicine.

Roughly five to ten percent of all people with diabetes have Type 1 diabetes. Previously known as juvenile-onset diabetes, Type 1 diabetes is typically first diagnosed in children and young adults and persists throughout life. Patients with the disease do not produce insulin because of autoimmune destruction of the insulin producing cells in the pancreas. Without insulin, patients cannot convert sugar, starches, and other food into energy needed for survival. When left untreated, Type 1 diabetes is a potentially fatal disease.

Penn Medicine is one of the world's leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $4.3 billion enterprise.

The Perelman School of Medicine has been ranked among the top five medical schools in the United States for the past 16 years, according to U.S. News & World Report's survey of research-oriented medical schools. The School is consistently among the nation's top recipients of funding from the National Institutes of Health, with $398 million awarded in the 2012 fiscal year.

The University of Pennsylvania Health System's patient care facilities include: The Hospital of the University of Pennsylvania -- recognized as one of the nation's top "Honor Roll" hospitals by U.S. News & World Report; Penn Presbyterian Medical Center; Chester County Hospital; Penn Wissahickon Hospice; and Pennsylvania Hospital -- the nation's first hospital, founded in 1751. Additional affiliated inpatient care facilities and services throughout the Philadelphia region include Chestnut Hill Hospital and Good Shepherd Penn Partners, a partnership between Good Shepherd Rehabilitation Network and Penn Medicine.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2012, Penn Medicine provided $827 million to benefit our community.

Katie Delach | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Health and Medicine:

nachricht Tracking movement of immune cells identifies key first steps in inflammatory arthritis
23.01.2017 | Massachusetts General Hospital

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>