Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Irreversible tissue loss seen within 40 days of spinal cord injury

The rate and extent of damage to the spinal cord and brain following spinal cord injury have long been a mystery.

Now, a joint research effort between the University of Zurich, University Hospital Balgrist and colleagues from University College London have found evidence that patients already have irreversible tissue loss in the spinal cord within 40 days of injury.

Schicht eines Gehirnscans. Rot: Dynamischer Verlust an Nervengewebe während der ersten zwölf Monate im kortikospinalen Trakt und sensomotorischen Kortex. Grün: Stellen mit geringerer Myelinkonzentration (grün). Bild: UZH

Using a new imaging measurement technique the impact of therapeutic treatments and rehabilitative interventions can be now determined more quickly and directly than before.

A spinal cord injury changes the functional state and structure of the spinal cord and the brain. For example, the patients’ ability to walk or move their hands can become restricted. How quickly such degenerative changes develop, however, has remained a mystery until now. The assumption was that it took years for patients with a spinal cord injury to also display anatomical changes in the spinal cord and brain above the injury site. For the first time, researchers from the University of Zurich and the Uniklinik Balgrist, along with English colleagues from University College London (UCL), now demonstrate that these changes already occur within 40 days of acute spinal cord injury.

Spinal cord depletes rapidly

The scientists studied 13 patients with acute spinal cord injuries every three months for a year using novel MRI (magnetic resonance imaging) protocols. They discovered that the diameter of the spinal cord had rapidly decreased and was already seven percent smaller after twelve months. A lesser volume decline was also evident in the corticospinal tract, a tract indispensable for motor control, and nerve cells in the sensorimotor cortex. The extent of the degenerative changes coincided with the clinical outcome. “Patients with a greater tissue loss above the injury site recovered less effectively than those with less changes,” explains Patrick Freund, the investigator responsible for the study at the Paraplegic Center Balgrist.

Gaining insights into effect of therapies

Treatments targeting the injured spinal cord have entered clinical trials. Gaining insights into mechanisms of repair and recovery within the first year are crucial. Thanks to the use of the new neuroimaging protocols, Freund says, we now have the possibility of displaying the effect of therapeutic treatments on the central nervous system and of rehabilitative measures more quickly. Consequently, the effect of new therapies can also be recorded more rapidly.

“This study is an excellent example of the value of combining the complementary expertise of the two universities,” says UCL’s Dean of Brain Sciences, Professor Alan Thompson, who is one of the senior authors of the study. “It provides exciting new insights into the complications of spinal cord trauma and gives us the possibility of identifying both imaging biomarkers and therapeutic targets.”

The findings are the result of a new three-year neuroscience partnership between the Neuroscience Centre Zurich (ZNZ) and UCL.

Patrick Freund, Nikolaus Weiskopf, John Ashburner, Katharina Wolf, Reto Sutter, Daniel R Altmann, Karl Friston, Alan Thompson, Armin Curt. MRI investigation of the sensorimotor cortex and corticospinal tract after acute spinal cord injury: a prospective longitudinal study. The Lancet Neurology. July 2, 2013.
Dr. Patrick Freund
Paraplegic Centre, Uniklinik Balgrist
Tel. +41 44 386 37 37

Nathalie Huber | Universität Zürich
Further information:

More articles from Health and Medicine:

nachricht Resolving the mystery of preeclampsia
21.10.2016 | Universitätsklinikum Magdeburg

nachricht New potential cancer treatment using microwaves to target deep tumors
12.10.2016 | University of Texas at Arlington

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>