Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Irregular arm swing may point to Parkinson's disease

14.12.2009
Irregular arm swings while walking could be an early sign of Parkinson's disease, according to neurologists who believe early detection may help physicians apply treatments to slow further brain cell damage until strategies to slow disease progression are available.

Parkinson's disease is an age-related disorder involving loss of certain types of brain cells and marked by impaired movement and slow speech.

"The disease is currently diagnosed by tremors at rest and stiffness in the body and limbs," said Xuemei Huang, associate professor of neurology, Penn State Hershey College of Medicine. "But by the time we diagnose the disease, about 50 to 80 percent of the critical cells called dopamine neurons are already dead."

Huang and her colleagues are studying gait, or the manner in which people walk, to understand the physical signs that might be a very early marker for the onset of Parkinson's. They have confirmed Huang's clinical impression that in people with Parkinson's, the arm swing is asymmetrical. In other words, one arm swings much less than the other as a person walks.

"We know that Parkinson's patients lose their arm swing even very early in the disease but nobody had looked using a scientifically measured approach to see if the loss was asymmetrical or when this asymmetry first showed up," said Huang. Her team's findings appear in the current issue of Gait and Posture. "Our hypothesis is that because Parkinson's is an asymmetrical disease, the arm swing on one arm will be lost first compared to the other."

The researchers compared the arm swing of 12 people diagnosed three years earlier with Parkinson's, to eight people in a control group. The Parkinson's patients were asked to stop all medication the night before to avoid influencing the test results.

The team used special equipment to measure movement accurately, including many reflective markers on the study participants and eight digital cameras that captured the exact position of each segment of the body during a walk.

"Images from the cameras were sent to a computer where special software analyzed the data" explained Huang. "When a person walks, the computer was able to calculate the degree of swing of each arm with millimeter accuracy."

Analysis of the magnitude of arm swing, asymmetry and walking speed revealed that the arm swing of people with Parkinson's has remarkably greater asymmetry than people in the control group -- one arm swung significantly less than the other in the Parkinson's patients.

When the participants walked at a faster speed, the arm swing increased but the corresponding asymmetry between them remained the same.

"We believe this is the first demonstration that asymmetrical arm swings may be a very early sign of the disease," said Huang.

While slightly irregular arm swing occurs in people without Parkinson's, the asymmetry is significantly larger in those suffering from the disease.

"Our data suggests that this could be a very useful tool for the early detection of Parkinson's," noted Huang. "There are wide scale efforts to find drugs that slow cell death. When they are found, they could be used in conjunction with this technique to arrest or perhaps cure the disease because they could be given before great damage has occurred."

Other researchers in the study include Michael D. Lewek, assistant professor of exercise and sport science; Roxanne Poole, study coordinator; Julia Johnson, clinical fellow, and Omar Halawa, medical student, all at University of North Carolina.

The National Institutes of Health and the University of North Carolina Center for Human Movement Sciences funded this work. Penn State has filed a provisional patent application on behalf of the scientists.

Amitabh Avasthi | EurekAlert!
Further information:
http://www.psu.edu

More articles from Health and Medicine:

nachricht Investigators may unlock mystery of how staph cells dodge the body's immune system
22.09.2017 | Cedars-Sinai Medical Center

nachricht Monitoring the heart's mitochondria to predict cardiac arrest?
21.09.2017 | Boston Children's Hospital

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>