Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Investigators create complex kidney structures from human stem cells derived from adults

19.10.2015

New technique offers model for studying disease, progress toward cell therapy

Investigators at Brigham and Women's Hospital (BWH) and the Harvard Stem Cell Institute (HSCI) have established a highly efficient method for making kidney structures from stem cells that are derived from skin taken from patients.


Researchers modeled kidney development and injury in kidney organoids (shown here), demonstrating that the organoid culture system can be used to study mechanisms of human kidney development and toxicity.

Credit: Ryuji Morizane, Brigham and Women's Hospital

The kidney structures formed could be used to study abnormalities of kidney development, chronic kidney disease, the effects of toxic drugs, and be incorporated into bioengineered devices to treat patients with acute and chronic kidney injury.

In the longer term, these methods could hasten progress toward replacing a damaged or diseased kidney with tissue derived from a patient's own cells. These results were published in Nature Biotechnology this week.

"Kidneys are the most commonly transplanted organs, but demand far outweighs supply," said co-corresponding author Ryuji Morizane, MD, PhD, associate biologist in BWH's Renal Division. "We have converted skin cells to stem cells and developed a highly efficient process to convert these stem cells into kidney structures that resemble those found in a normal human kidney. We're hopeful that this finding will pave the way for the future creation of kidney tissues that could function in a patient and eliminate the need for transplantation from a donor."

Chronic kidney disease (CKD) affects 9 to11 percent of the U.S. adult population and is a serious public health problem worldwide. Central to the progression of CKD is the gradual and irreversible loss of nephrons, the individual functional units of the kidney. Patients with end-stage kidney disease benefit from treatments such as dialysis and kidney transplantation, but these approaches have several limitations, including the limited supply of compatible organ donors.

While the human kidney does have some capacity to repair itself after injury, it is not able to regenerate new nephrons. In previous studies, researchers have successfully differentiated stem cells into heart, liver, pancreas or nerve cells by adding certain chemicals, but kidney cells have proved challenging.

Using normal kidney development as a roadmap, the BWH investigators developed an efficient method to create kidney precursor cells that self assemble into structures which mimic complex structures of the kidney. The research team further tested these organoids - three-dimensional organ structures grown in the lab - and found that they could be used to model kidney development and susceptibility of the kidney tissue to therapeutic drug toxicity.

The kidney structures also have the potential to facilitate further studies of how abnormalities occur as the human kidney develops in the uterus and to establish models of disease where they can be used to test new therapies.

"This new finding could hasten progress to model human disease, find new therapeutic agents, identify patient-specific susceptibility to toxicity of drugs and may one day result in replacement of human kidney tissue in patients with kidney disease from cells derived from that same patient," said author Joseph V. Bonventre, chief of BWH's Renal Division and Chief of BWH's Division of Biomedical Engineering.

"This approach is especially attractive because the tissues obtained would be 'personalized' and, because of their genetic identity to the patient from whom they were derived, this approach may ultimately lead to tissue replacement without the need for suppression of the immune system."

###

Study co-authors also included BWH Renal Division Faculty members Albert Q. Lam, MD and M. Todd Valerius, PhD. This study was funded by the U.S. National Institutes of Health (NIH) grants R37 DK039773 and R01 DK072381; Grant-in-Aid for Japan Society for the Promotion of Science; Postdoctoral Fellowship for Research Abroad; American Heart Association grant 11FTF7320023; Harvard Stem Cell Institute; and NIH DK102826 and National Kidney Foundation Young Investigator Grant.

Brigham and Women's Hospital (BWH) is a 793-bed nonprofit teaching affiliate of Harvard Medical School and a founding member of Partners HealthCare. BWH has more than 4.2 million annual patient visits, nearly 46,000 inpatient stays and employs nearly 16,000 people. The Brigham's medical preeminence dates back to 1832, and today that rich history in clinical care is coupled with its national leadership in patient care, quality improvement and patient safety initiatives, and its dedication to research, innovation, community engagement and educating and training the next generation of health care professionals. Through investigation and discovery conducted at its Brigham Research Institute (BRI), BWH is an international leader in basic, clinical and translational research on human diseases, more than 1,000 physician-investigators and renowned biomedical scientists and faculty supported by nearly $600 million in funding. For the last 25 years, BWH ranked second in research funding from the National Institutes of Health (NIH) among independent hospitals. BWH continually pushes the boundaries of medicine, including building on its legacy in transplantation by performing a partial face transplant in 2009 and the nation's first full face transplant in 2011. BWH is also home to major landmark epidemiologic population studies, including the Nurses' and Physicians' Health Studies and the Women's Health Initiative as well as the TIMI Study Group, one of the premier cardiovascular clinical trials groups. For more information, resources and to follow us on social media, please visit BWH's online newsroom.

Haley Bridger | EurekAlert!

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>