Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Investigational malaria vaccine found safe and protective

09.08.2013
NIH vaccine researchers publish results of early-stage clinical trial

An investigational malaria vaccine has been found to be safe, to generate an immune system response, and to offer protection against malaria infection in healthy adults, according to the results of an early-stage clinical trial published Aug. 8 in the journal Science.

The vaccine, known as PfSPZ Vaccine, was developed by scientists at Sanaria Inc., of Rockville, Md. The clinical evaluation was conducted by researchers at the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health, and their collaborators at the Walter Reed Army Institute of Research and the Naval Medical Research Center, both in Silver Spring, Md.

Malaria is transmitted to humans by the bite of an infected mosquito. After the bite occurs, infectious malaria parasites in the immature, sporozoite stage of their life cycle first travel to the liver, where they multiply, and then spread through the bloodstream, at which time symptoms develop.

The PfSPZ Vaccine is composed of live but weakened sporozoites of the species Plasmodium falciparum, the most deadly of the malaria-causing parasites.

"The global burden of malaria is extraordinary and unacceptable," said NIAID Director Anthony S. Fauci, M.D. "Scientists and health care providers have made significant gains in characterizing, treating and preventing malaria; however, a vaccine has remained an elusive goal. We are encouraged by this important step forward."

The Phase I trial, which took place at the NIH Clinical Center in Bethesda, received informed consent from and enrolled 57 healthy adult volunteers ages 18 to 45 years who never had malaria. Of these, 40 participants received the vaccine and 17 did not. To evaluate the vaccine's safety, vaccinees were split into groups receiving two to six intravenous doses of PfSPZ Vaccine at increasing dosages. After vaccination, participants were monitored closely for seven days. No severe adverse effects associated with the vaccine occurred, and no malaria infections related to vaccination were observed.

Based on blood measurements, researchers found that participants who received a higher total dosage of PfSPZ Vaccine generated more antibodies against malaria and more T cells—a type of immune system cell—specific to the vaccine.

To evaluate whether and how well the PfSPZ Vaccine prevented malaria infection, each participant—the vaccinees as well as the control group that did not receive vaccine—was exposed to bites by five mosquitoes carrying the P. falciparum strain from which the PfSPZ Vaccine was derived. This controlled human malaria infection procedure—a standard process in malaria vaccine trials—took place three weeks after participants received their final vaccination. Participants were monitored as outpatients for seven days and then admitted to the NIH Clinical Center, where they stayed until they were diagnosed with malaria, treated with anti-malarial drugs and cured of infection, or shown to be free of infection.

The researchers found that the higher dosages of PfSPZ Vaccine were associated with protection against malaria infection. Only three of the 15 participants who received higher dosages of the vaccine became infected, compared to 16 of 17 participants in the lower dosage group who became infected. Among the 12 participants who received no vaccine, 11 participants became infected after mosquito challenge.

"In this trial, we showed in principle that sporozoites can be developed into a malaria vaccine that confers high levels of protection and is made using the good manufacturing practices that are required for vaccine licensure ," said Robert A. Seder, M.D., chief of the Cellular Immunology Section of the NIAID Vaccine Research Center and principal investigator of the trial.

An important challenge in the continued development of PfSPZ Vaccine is that the vaccine currently is administered intravenously—a rare delivery route for vaccines. Previous studies at lower doses have shown that the more common intradermal (into the skin) and subcutaneous (under the skin) routes did not yield as strong an immune response as the intravenous route.

"Despite this challenge, these trial results are a promising first step in generating high-level protection against malaria, and they allow for future studies to optimize the dose, schedule and delivery route of the candidate vaccine," said Dr. Seder.

A number of follow-up studies are planned, including research to evaluate the vaccine's different dose schedules, possible protection against other Plasmodium strains and the durability of protection. The researchers may also evaluate whether higher doses administered subcutaneously or intradermally provide the same level of protection as that found in this study.

NIAID conducts and supports research—at NIH, throughout the United States, and worldwide—to study the causes of infectious and immune-mediated diseases, and to develop better means of preventing, diagnosing and treating these illnesses. News releases, fact sheets and other NIAID-related materials are available on the NIAID Web site at http://www.niaid.nih.gov.

About the National Institutes of Health (NIH): NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit http://www.nih.gov.

NIH...Turning Discovery Into Health®

References: Seder et al. Protection against malaria by intravenous immunization with a non-replicating sporozoite vaccine. Science Express. DOI: 10.1126/science.1241800 (2013).

NIH Clinical Center. Clinical trial: Experimental PfSPZ vaccine in adults without malaria (http://clinicaltrials.gov/ct2/show/NCT01441167). ClinicalTrials.gov Identifier: NCT01441167.

For more information, see the NIAID Media Availabilities on the results of an earlier trial of PfSPZ (http://www.niaid.nih.gov/news/newsreleases/2011/Pages/MalariaCD8Vax.aspx)and the launch of the study described in this release (http://www.niaid.nih.gov/news/newsreleases/2012/Pages/MalariaVRC312.aspx).

Nalini Padmanabhan | EurekAlert!
Further information:
http://www.niaid.nih.gov

More articles from Health and Medicine:

nachricht On track to heal leukaemia
18.01.2017 | Universitätsspital Bern

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Explaining how 2-D materials break at the atomic level

18.01.2017 | Materials Sciences

Data analysis optimizes cyber-physical systems in telecommunications and building automation

18.01.2017 | Information Technology

Reducing household waste with less energy

18.01.2017 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>