Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New investigational compound targets pancreatic cancer cells

16.09.2010
World's first patient treated at Virginia G. Piper Cancer Center at Scottsdale Healthcare

A new investigational drug designed to penetrate and attack pancreatic cancer cells has been administered to a patient for the first time ever at the Virginia G. Piper Cancer Center at Scottsdale Healthcare.

ASG-5ME is a potent, targeted compound designed to selectively kill cancer cells, says Daniel Von Hoff, MD, a principal investigator in the Phase I clinical trial. Pancreatic cancer is a fast-growing and difficult to treat form of cancer, and is the fourth leading cause of cancer death in the United States.

"ASG-5ME is intended for pancreatic cancer patients who do not have a good prognosis with currently available therapies. We are very pleased to be able to offer this exciting agent in a clinical trial for patients with advanced pancreatic cancer," says Dr. Von Hoff. "Our goal at the Virginia G. Piper Cancer Center is to deliver cell-killing medicine through the best possible individually targeted therapies, and ASG-5ME fits the bill."

The new investigational compound uses a monoclonal antibody against a target which is found in more than 90 percent of pancreatic cancer patients. The monoclonal antibody delivers a highly potent molecule called monomethyl auristatin E (MMAE) to selectively kill the pancreatic cancer cells.

"It is a precision approach that is designed to avoid non-targeted cells, increasing antitumor activity in preclinical models and potentially reducing the toxic effects of traditional chemotherapy" says Dr. Von Hoff. Researchers are studying the drug to evaluate its safety and tolerability and identify the maximum tolerated dose.

The Virginia G. Piper Cancer Center at Scottsdale Healthcare was the first to offer patient access to ASG-5ME. Researchers hope to enroll up to 50 patients in clinical trials of the drug in multiple centers across the U.S.

The drug was co-developed by Seattle Genetics, Inc. of Bothell, Wash. and Agensys, Inc., an affiliate of Tokyo-based Astellas Pharma Inc.

More than 36,000 people are expected to die from pancreatic cancer in 2010, according to the American Cancer Society. Most patients with advanced pancreatic cancer die within one year of diagnosis.

The Virginia G. Piper Cancer Center at Scottsdale Healthcare opened in 2001 as the first major cancer center in greater Phoenix to offer comprehensive cancer research, diagnosis, treatment, prevention and support services in a single location. The Commission on Cancer of the American College of Surgeons has awarded Accreditation with Commendation to the Scottsdale Healthcare cancer program.

Dr. Von Hoff is chief scientific officer at the Virginia G. Piper Cancer Center at Scottsdale Healthcare and physician-in-chief at the Translational Genomics Research Institute (TGen).

Research at the Virginia G. Piper Cancer Center at Scottsdale Healthcare is conducted in collaboration with TGen and the Scottsdale Healthcare Research Institute, allowing molecular and genomic discoveries to reach the patient bedside as quickly as possible through clinical trials of therapies directed at specific targets in a patient's tumor.

For more information about eligibility to participate in research at the Virginia G. Piper Cancer Center at Scottsdale Healthcare, contact cancer care coordinator Joyce Schaffer, RN, at 480-323-1339, toll free at 1-877-273-3713 or via email at clinicaltrials@shc.org.

Keith Jones | EurekAlert!
Further information:
http://www.shc.org

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>