Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New investigational compound targets pancreatic cancer cells

16.09.2010
World's first patient treated at Virginia G. Piper Cancer Center at Scottsdale Healthcare

A new investigational drug designed to penetrate and attack pancreatic cancer cells has been administered to a patient for the first time ever at the Virginia G. Piper Cancer Center at Scottsdale Healthcare.

ASG-5ME is a potent, targeted compound designed to selectively kill cancer cells, says Daniel Von Hoff, MD, a principal investigator in the Phase I clinical trial. Pancreatic cancer is a fast-growing and difficult to treat form of cancer, and is the fourth leading cause of cancer death in the United States.

"ASG-5ME is intended for pancreatic cancer patients who do not have a good prognosis with currently available therapies. We are very pleased to be able to offer this exciting agent in a clinical trial for patients with advanced pancreatic cancer," says Dr. Von Hoff. "Our goal at the Virginia G. Piper Cancer Center is to deliver cell-killing medicine through the best possible individually targeted therapies, and ASG-5ME fits the bill."

The new investigational compound uses a monoclonal antibody against a target which is found in more than 90 percent of pancreatic cancer patients. The monoclonal antibody delivers a highly potent molecule called monomethyl auristatin E (MMAE) to selectively kill the pancreatic cancer cells.

"It is a precision approach that is designed to avoid non-targeted cells, increasing antitumor activity in preclinical models and potentially reducing the toxic effects of traditional chemotherapy" says Dr. Von Hoff. Researchers are studying the drug to evaluate its safety and tolerability and identify the maximum tolerated dose.

The Virginia G. Piper Cancer Center at Scottsdale Healthcare was the first to offer patient access to ASG-5ME. Researchers hope to enroll up to 50 patients in clinical trials of the drug in multiple centers across the U.S.

The drug was co-developed by Seattle Genetics, Inc. of Bothell, Wash. and Agensys, Inc., an affiliate of Tokyo-based Astellas Pharma Inc.

More than 36,000 people are expected to die from pancreatic cancer in 2010, according to the American Cancer Society. Most patients with advanced pancreatic cancer die within one year of diagnosis.

The Virginia G. Piper Cancer Center at Scottsdale Healthcare opened in 2001 as the first major cancer center in greater Phoenix to offer comprehensive cancer research, diagnosis, treatment, prevention and support services in a single location. The Commission on Cancer of the American College of Surgeons has awarded Accreditation with Commendation to the Scottsdale Healthcare cancer program.

Dr. Von Hoff is chief scientific officer at the Virginia G. Piper Cancer Center at Scottsdale Healthcare and physician-in-chief at the Translational Genomics Research Institute (TGen).

Research at the Virginia G. Piper Cancer Center at Scottsdale Healthcare is conducted in collaboration with TGen and the Scottsdale Healthcare Research Institute, allowing molecular and genomic discoveries to reach the patient bedside as quickly as possible through clinical trials of therapies directed at specific targets in a patient's tumor.

For more information about eligibility to participate in research at the Virginia G. Piper Cancer Center at Scottsdale Healthcare, contact cancer care coordinator Joyce Schaffer, RN, at 480-323-1339, toll free at 1-877-273-3713 or via email at clinicaltrials@shc.org.

Keith Jones | EurekAlert!
Further information:
http://www.shc.org

More articles from Health and Medicine:

nachricht GLUT5 fluorescent probe fingerprints cancer cells
20.04.2018 | Michigan Technological University

nachricht Scientists re-create brain neurons to study obesity and personalize treatment
20.04.2018 | Cedars-Sinai Medical Center

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>