Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Invention Could Improve Treatment for Children with "Water on the Brain"

27.09.2010
Researchers create device to find ways to improve commonly used hydrocephalus treatment

Van Andel Research Institute (VARI) scientists participated in a study with researchers from the University of Utah that could help find ways to improve shunt systems used to treat the neurological disorder hydrocephalus, or “water on the brain,” the leading cause of brain surgery for children in the United States. Researchers studied the shunt systems under a variety of conditions by creating a bioreactor that mimics the environment inside patients.

Hydrocephalus is an excessive accumulation of cerebrospinal fluid (CSF) in the brain and is one of the most common birth defects, affecting approximately one in 500 children every year. Another 6,000 children annually develop hydrocephalus during the first two years of life. The pressure created by too much CSF can affect mental ability, balance, personality, and vision, result in headaches and seizures, and even lead to death.

“This paper is a very valuable contribution to the field of hydrocephalus research,” said Pat McAllister, Ph.D., Professor and Director of Basic Hydrocephalus Research and Adjunct Professor of Physiology and Bioengineering at University of Utah School of Medicine. “Tragically, practically all patients with hydrocephalus are at risk for shunt malfunctions, which invariably produce more brain injury, and most of these patients must undergo multiple surgeries to remove obstructed catheters. These studies represent significant advancements in our attempts to prevent cells from blocking shunt catheters, and we look forward to continuing our work with Dr. Resau and his colleagues.”

Hydrocephalus is typically treated by implanting shunt systems in the brain that can divert the flow of CSF to other areas of the body where it can be absorbed into the circulatory system. However, complications due to blockage occur in up to 61% of patients, and an estimated 50% of shunts need to be replaced within two years. University of Utah researcher Carolyn Harris, a Ph.D. candidate in bioengineering, designed the hydrocephalus shunt catheter bioreactor to study shunt systems under a variety of conditions to find ways to improve the treatment.

The bioreactor mimics the conditions inside the patient’s body more closely than growing cells in a Petri dish. Cells suspended in fluid are pumped through tubing connected to catheters used in shunt systems, oriented both horizontally and vertically. Researchers can study and control factors such as flow rate, pressure changes, and pulsation frequency, which can vary from patient to patient, and determine how each affects cells’ adhesion to the catheters.

VARI researchers provided imaging and flow cytometry to determine the number of cells that adhered to the catheters and the characteristics of those cells.

“This project grew out of a collaboration to see if we could develop a material that would resist the growth of cells,” said VARI Distinguished Scientific Investigator Jim Resau, Ph.D., one of the authors of the study. “So actually our part was to image and quantify the effect of certain components to inhibit the build-up of scar-like cells. This approach could also be applied to other instruments inserted into the body, such as electrodes.”

This project was supported by the Division of Pediatric Neurosurgery at the University of Utah School of Medicine, Van Andel Research Institute, and STARS-kids (Seeking Techniques Advancing Research in Shunts).

About Van Andel Institute
Established by Jay and Betty Van Andel in 1996, Van Andel Institute (VAI) is an independent research and educational organization based in Grand Rapids, Mich., dedicated to preserving, enhancing and expanding the frontiers of medical science, and to achieving excellence in education by probing fundamental issues of education and the learning process. VARI, the research arm of VAI, is dedicated to probing the genetic, cellular and molecular origins of cancer, Parkinson and other diseases and working to translate those findings into effective therapies. This is accomplished through the work of over 200 researchers in 18 on-site laboratories and in collaborative partnerships that span the globe. VARI is affiliated with the Translational Genomics Research Institute, (TGen), of Phoenix, Arizona.

Joe Gavan | EurekAlert!
Further information:
http://www.vai.org

Further reports about: Andel Brain CSF Cancer treatment Medicine Utah VARI birth defect invention

More articles from Health and Medicine:

nachricht A promising target for kidney fibrosis
21.04.2017 | Brigham and Women's Hospital

nachricht Stem cell transplants: activating signal paths may protect from graft-versus-host disease
20.04.2017 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>