Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Invention Could Improve Treatment for Children with "Water on the Brain"

27.09.2010
Researchers create device to find ways to improve commonly used hydrocephalus treatment

Van Andel Research Institute (VARI) scientists participated in a study with researchers from the University of Utah that could help find ways to improve shunt systems used to treat the neurological disorder hydrocephalus, or “water on the brain,” the leading cause of brain surgery for children in the United States. Researchers studied the shunt systems under a variety of conditions by creating a bioreactor that mimics the environment inside patients.

Hydrocephalus is an excessive accumulation of cerebrospinal fluid (CSF) in the brain and is one of the most common birth defects, affecting approximately one in 500 children every year. Another 6,000 children annually develop hydrocephalus during the first two years of life. The pressure created by too much CSF can affect mental ability, balance, personality, and vision, result in headaches and seizures, and even lead to death.

“This paper is a very valuable contribution to the field of hydrocephalus research,” said Pat McAllister, Ph.D., Professor and Director of Basic Hydrocephalus Research and Adjunct Professor of Physiology and Bioengineering at University of Utah School of Medicine. “Tragically, practically all patients with hydrocephalus are at risk for shunt malfunctions, which invariably produce more brain injury, and most of these patients must undergo multiple surgeries to remove obstructed catheters. These studies represent significant advancements in our attempts to prevent cells from blocking shunt catheters, and we look forward to continuing our work with Dr. Resau and his colleagues.”

Hydrocephalus is typically treated by implanting shunt systems in the brain that can divert the flow of CSF to other areas of the body where it can be absorbed into the circulatory system. However, complications due to blockage occur in up to 61% of patients, and an estimated 50% of shunts need to be replaced within two years. University of Utah researcher Carolyn Harris, a Ph.D. candidate in bioengineering, designed the hydrocephalus shunt catheter bioreactor to study shunt systems under a variety of conditions to find ways to improve the treatment.

The bioreactor mimics the conditions inside the patient’s body more closely than growing cells in a Petri dish. Cells suspended in fluid are pumped through tubing connected to catheters used in shunt systems, oriented both horizontally and vertically. Researchers can study and control factors such as flow rate, pressure changes, and pulsation frequency, which can vary from patient to patient, and determine how each affects cells’ adhesion to the catheters.

VARI researchers provided imaging and flow cytometry to determine the number of cells that adhered to the catheters and the characteristics of those cells.

“This project grew out of a collaboration to see if we could develop a material that would resist the growth of cells,” said VARI Distinguished Scientific Investigator Jim Resau, Ph.D., one of the authors of the study. “So actually our part was to image and quantify the effect of certain components to inhibit the build-up of scar-like cells. This approach could also be applied to other instruments inserted into the body, such as electrodes.”

This project was supported by the Division of Pediatric Neurosurgery at the University of Utah School of Medicine, Van Andel Research Institute, and STARS-kids (Seeking Techniques Advancing Research in Shunts).

About Van Andel Institute
Established by Jay and Betty Van Andel in 1996, Van Andel Institute (VAI) is an independent research and educational organization based in Grand Rapids, Mich., dedicated to preserving, enhancing and expanding the frontiers of medical science, and to achieving excellence in education by probing fundamental issues of education and the learning process. VARI, the research arm of VAI, is dedicated to probing the genetic, cellular and molecular origins of cancer, Parkinson and other diseases and working to translate those findings into effective therapies. This is accomplished through the work of over 200 researchers in 18 on-site laboratories and in collaborative partnerships that span the globe. VARI is affiliated with the Translational Genomics Research Institute, (TGen), of Phoenix, Arizona.

Joe Gavan | EurekAlert!
Further information:
http://www.vai.org

Further reports about: Andel Brain CSF Cancer treatment Medicine Utah VARI birth defect invention

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>