Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Introducing the multi-tasking nanoparticle

27.08.2014

Versatile particles offer a wide variety of diagnostic and therapeutic applications

Kit Lam and colleagues from UC Davis and other institutions have created dynamic nanoparticles (NPs) that could provide an arsenal of applications to diagnose and treat cancer. Built on an easy-to-make polymer, these particles can be used as contrast agents to light up tumors for MRI and PET scans or deliver chemo and other therapies to destroy tumors. In addition, the particles are biocompatible and have shown no toxicity. The study was published online today in Nature Communications.

“These are amazingly useful particles,” noted co-first author Yuanpei Li, a research faculty member in the Lam laboratory. “As a contrast agent, they make tumors easier to see on MRI and other scans. We can also use them as vehicles to deliver chemotherapy directly to tumors; apply light to make the nanoparticles release singlet oxygen (photodynamic therapy) or use a laser to heat them (photothermal therapy) – all proven ways to destroy tumors.”

Jessica Tucker, program director of Drug and Gene Delivery and Devices at the National Institute of Biomedical Imaging and Bioengineering, which is part of the National Institutes of Health, said the approach outlined in the study has the ability to combine both imaging and therapeutic applications in a single platform, which has been difficult to achieve, especially in an organic, and therefore biocompatible, vehicle.

"This is especially valuable in cancer treatment, where targeted treatment to tumor cells, and the reduction of lethal effects in normal cells, is so critical,” she added.

 Though not the first nanoparticles, these may be the most versatile. Other particles are good at some tasks but not others. Non-organic particles, such as quantum dots or gold-based materials, work well as diagnostic tools but have safety issues. Organic probes are biocompatible and can deliver drugs but lack imaging or phototherapy applications.

Built on a porphyrin/cholic acid polymer, the nanoparticles are simple to make and perform well in the body. Porphyrins are common organic compounds. Cholic acid is produced by the liver. The basic nanoparticles are 21 nanometers wide (a nanometer is one-billionth of a meter).

To further stabilize the particles, the researchers added the amino acid cysteine (creating CNPs), which prevents them from prematurely releasing their therapeutic payload when exposed to blood proteins and other barriers. At 32 nanometers, CNPs are ideally sized to penetrate tumors, accumulating among cancer cells while sparing healthy tissue.

In the study, the team tested the nanoparticles, both in vitro and in vivo, for a wide range of tasks. On the therapeutic side, CNPs effectively transported anti-cancer drugs, such as doxorubicin. Even when kept in blood for many hours, CNPs only released small amounts of the drug; however, when exposed to light or agents such as glutathione, they readily released their payloads. The ability to precisely control chemotherapy release inside tumors could greatly reduce toxicity. CNPs carrying doxorubicin provided excellent cancer control in animals, with minimal side effects.

CNPs also can be configured to respond to light, producing singlet oxygen, reactive molecules that destroy tumor cells. They can also generate heat when hit with laser light. Significantly, CNPs can perform either task when exposed to a single wavelength of light.

CNPs offer a number of advantages to enhance imaging. They readily chelate imaging agents and can remain in the body for long periods. In animal studies, CNPs congregated in tumors, making them easier to read on an MRI. Because CNPs accumulated in tumors, and not so much in normal tissue, they dramatically enhanced tumor contrast for MRI and may also be promising for PET-MRI scans.

This versatility provides multiple options for clinicians, as they mix and match applications.

“These particles can combine imaging and therapeutics,” said Li. “We could potentially use them to simultaneously deliver treatment and monitor treatment efficacy.”

“These particles can also be used as optical probes for image-guided surgery,” said Lam. “In addition, they can be used as highly potent photosensitizing agents for intraoperative phototherapy.”

While early results are promising, there is still a long way to go before CNPs can enter the clinic. The Lam lab and its collaborators will pursue preclinical studies and, if all goes well, proceed to human trials. In the meantime, the team is excited about these capabilities.

“This is the first nanoparticle to perform so many different jobs,” said Li. “From delivering chemo, photodynamic and photothermal therapies to enhancing diagnostic imaging, it’s the complete package.”

Other researchers included Tzu-yin Lin, Yan Luo, Qiangqiang Liu, Wenwu Xiao, Wenchang Gu1, Diana Lac, Hongyong Zhang, Caihong Feng, Sebastian Wachsmann-Hogiu, Jeffrey H. Walton, Simon R. Cherry, Douglas J. Rowland, David Kukis and Chongxian Pan.

This research was funded by the National Cancer Institute (grants R01CA115483 and R01CA140449), National Institute of Biomedical Imaging and Bioengineering (grant R01EB012569), the Department of Defense (grant W81XWH-12-1-008), the Prostate Cancer Foundation, the Veterans Administration and the California Institute for Regenerative Medicine.

UC Davis Comprehensive Cancer Center
UC Davis Comprehensive Cancer Center is the only National Cancer Institute-designated center serving the Central Valley and inland Northern California, a region of more than 6 million people. Its specialists provide compassionate, comprehensive care for more than 10,000 adults and children every year, and access to more than 150 clinical trials at any given time. Its innovative research program engages more than 280 scientists at UC Davis, Lawrence Livermore National Laboratory and Jackson Laboratory (JAX West), whose scientific partnerships advance discovery of new tools to diagnose and treat cancer. Through the Cancer Care Network, UC Davis collaborates with a number of hospitals and clinical centers throughout the Central Valley and Northern California regions to offer the latest cancer care. Its community-based outreach and education programs address disparities in cancer outcomes across diverse populations. For more information, visit cancer.ucdavis.edu.

Dorsey Griffith | Eurek Alert!
Further information:
http://www.ucdmc.ucdavis.edu/publish/news/newsroom/9051

Further reports about: Cancer Health MRI acid biocompatible blood deliver nanoparticle particles phototherapy scans tumors

More articles from Health and Medicine:

nachricht Discovery points to a new path toward a universal flu vaccine
03.07.2015 | Rockefeller University

nachricht "CCS Telehealth Ostsachsen", Germany's largest telemedicine project, goes online in Dresden
02.07.2015 | Universitätsklinikum Carl Gustav Carus Dresden

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Viaducts with wind turbines, the new renewable energy source

Wind turbines could be installed under some of the biggest bridges on the road network to produce electricity. So it is confirmed by calculations carried out by a European researchers team, that have taken a viaduct in the Canary Islands as a reference. This concept could be applied in heavily built-up territories or natural areas with new constructions limitations.

The Juncal Viaduct, in Gran Canaria, has served as a reference for Spanish and British researchers to verify that the wind blowing between the pillars on this...

Im Focus: X-rays and electrons join forces to map catalytic reactions in real-time

New technique combines electron microscopy and synchrotron X-rays to track chemical reactions under real operating conditions

A new technique pioneered at the U.S. Department of Energy's Brookhaven National Laboratory reveals atomic-scale changes during catalytic reactions in real...

Im Focus: Iron: A biological element?

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and a half billion years ago.

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and...

Im Focus: Thousands of Droplets for Diagnostics

Researchers develop new method enabling DNA molecules to be counted in just 30 minutes

A team of scientists including PhD student Friedrich Schuler from the Laboratory of MEMS Applications at the Department of Microsystems Engineering (IMTEK) of...

Im Focus: Bionic eye clinical trial results show long-term safety, efficacy vision-restoring implant

Patients using Argus II experienced significant improvement in visual function and quality of life

The three-year clinical trial results of the retinal implant popularly known as the "bionic eye," have proven the long-term efficacy, safety and reliability of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

World Conference on Regenerative Medicine: Abstract Submission has been extended to 24 June

16.06.2015 | Event News

MUSE hosting Europe’s largest science communication conference

11.06.2015 | Event News

 
Latest News

A 'movie' of ultrafast rotating molecules at a hundred billion per second

06.07.2015 | Life Sciences

First Comprehensive Analysis of the Woolly Mammoth Genome Completed

06.07.2015 | Life Sciences

Successful: Cement on Top of Carbon Dioxide

06.07.2015 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>