Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Introducing the multi-tasking nanoparticle


Versatile particles offer a wide variety of diagnostic and therapeutic applications

Kit Lam and colleagues from UC Davis and other institutions have created dynamic nanoparticles (NPs) that could provide an arsenal of applications to diagnose and treat cancer. Built on an easy-to-make polymer, these particles can be used as contrast agents to light up tumors for MRI and PET scans or deliver chemo and other therapies to destroy tumors. In addition, the particles are biocompatible and have shown no toxicity. The study was published online today in Nature Communications.

“These are amazingly useful particles,” noted co-first author Yuanpei Li, a research faculty member in the Lam laboratory. “As a contrast agent, they make tumors easier to see on MRI and other scans. We can also use them as vehicles to deliver chemotherapy directly to tumors; apply light to make the nanoparticles release singlet oxygen (photodynamic therapy) or use a laser to heat them (photothermal therapy) – all proven ways to destroy tumors.”

Jessica Tucker, program director of Drug and Gene Delivery and Devices at the National Institute of Biomedical Imaging and Bioengineering, which is part of the National Institutes of Health, said the approach outlined in the study has the ability to combine both imaging and therapeutic applications in a single platform, which has been difficult to achieve, especially in an organic, and therefore biocompatible, vehicle.

"This is especially valuable in cancer treatment, where targeted treatment to tumor cells, and the reduction of lethal effects in normal cells, is so critical,” she added.

 Though not the first nanoparticles, these may be the most versatile. Other particles are good at some tasks but not others. Non-organic particles, such as quantum dots or gold-based materials, work well as diagnostic tools but have safety issues. Organic probes are biocompatible and can deliver drugs but lack imaging or phototherapy applications.

Built on a porphyrin/cholic acid polymer, the nanoparticles are simple to make and perform well in the body. Porphyrins are common organic compounds. Cholic acid is produced by the liver. The basic nanoparticles are 21 nanometers wide (a nanometer is one-billionth of a meter).

To further stabilize the particles, the researchers added the amino acid cysteine (creating CNPs), which prevents them from prematurely releasing their therapeutic payload when exposed to blood proteins and other barriers. At 32 nanometers, CNPs are ideally sized to penetrate tumors, accumulating among cancer cells while sparing healthy tissue.

In the study, the team tested the nanoparticles, both in vitro and in vivo, for a wide range of tasks. On the therapeutic side, CNPs effectively transported anti-cancer drugs, such as doxorubicin. Even when kept in blood for many hours, CNPs only released small amounts of the drug; however, when exposed to light or agents such as glutathione, they readily released their payloads. The ability to precisely control chemotherapy release inside tumors could greatly reduce toxicity. CNPs carrying doxorubicin provided excellent cancer control in animals, with minimal side effects.

CNPs also can be configured to respond to light, producing singlet oxygen, reactive molecules that destroy tumor cells. They can also generate heat when hit with laser light. Significantly, CNPs can perform either task when exposed to a single wavelength of light.

CNPs offer a number of advantages to enhance imaging. They readily chelate imaging agents and can remain in the body for long periods. In animal studies, CNPs congregated in tumors, making them easier to read on an MRI. Because CNPs accumulated in tumors, and not so much in normal tissue, they dramatically enhanced tumor contrast for MRI and may also be promising for PET-MRI scans.

This versatility provides multiple options for clinicians, as they mix and match applications.

“These particles can combine imaging and therapeutics,” said Li. “We could potentially use them to simultaneously deliver treatment and monitor treatment efficacy.”

“These particles can also be used as optical probes for image-guided surgery,” said Lam. “In addition, they can be used as highly potent photosensitizing agents for intraoperative phototherapy.”

While early results are promising, there is still a long way to go before CNPs can enter the clinic. The Lam lab and its collaborators will pursue preclinical studies and, if all goes well, proceed to human trials. In the meantime, the team is excited about these capabilities.

“This is the first nanoparticle to perform so many different jobs,” said Li. “From delivering chemo, photodynamic and photothermal therapies to enhancing diagnostic imaging, it’s the complete package.”

Other researchers included Tzu-yin Lin, Yan Luo, Qiangqiang Liu, Wenwu Xiao, Wenchang Gu1, Diana Lac, Hongyong Zhang, Caihong Feng, Sebastian Wachsmann-Hogiu, Jeffrey H. Walton, Simon R. Cherry, Douglas J. Rowland, David Kukis and Chongxian Pan.

This research was funded by the National Cancer Institute (grants R01CA115483 and R01CA140449), National Institute of Biomedical Imaging and Bioengineering (grant R01EB012569), the Department of Defense (grant W81XWH-12-1-008), the Prostate Cancer Foundation, the Veterans Administration and the California Institute for Regenerative Medicine.

UC Davis Comprehensive Cancer Center
UC Davis Comprehensive Cancer Center is the only National Cancer Institute-designated center serving the Central Valley and inland Northern California, a region of more than 6 million people. Its specialists provide compassionate, comprehensive care for more than 10,000 adults and children every year, and access to more than 150 clinical trials at any given time. Its innovative research program engages more than 280 scientists at UC Davis, Lawrence Livermore National Laboratory and Jackson Laboratory (JAX West), whose scientific partnerships advance discovery of new tools to diagnose and treat cancer. Through the Cancer Care Network, UC Davis collaborates with a number of hospitals and clinical centers throughout the Central Valley and Northern California regions to offer the latest cancer care. Its community-based outreach and education programs address disparities in cancer outcomes across diverse populations. For more information, visit

Dorsey Griffith | Eurek Alert!
Further information:

Further reports about: Cancer Health MRI acid biocompatible blood deliver nanoparticle particles phototherapy scans tumors

More articles from Health and Medicine:

nachricht Penn study stops vision loss in late-stage canine X-linked retinitis pigmentosa
13.10.2015 | University of Pennsylvania

nachricht Breast cancer drug beats superbug
13.10.2015 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Secure data transfer thanks to a single photon

Physicists of TU Berlin and mathematicians of MATHEON are so successful that even the prestigious journal “Nature Communications” reported on their project.

Security in data transfer is an important issue, and not only since the NSA scandal. Sometimes, however, the need for speed conflicts to a certain degree with...

Im Focus: A Light Touch May Help Animals and Robots Move on Sand and Snow

Having a light touch can make a hefty difference in how well animals and robots move across challenging granular surfaces such as snow, sand and leaf litter. Research reported October 9 in the journal Bioinspiration & Biomimetics shows how the design of appendages – whether legs or wheels – affects the ability of both robots and animals to cross weak and flowing surfaces.

Using an air fluidized bed trackway filled with poppy seeds or glass spheres, researchers at the Georgia Institute of Technology systematically varied the...

Im Focus: Reliable in-line inspections of high-strength automotive body parts within seconds

Nondestructive material testing (NDT) is a fast and effective way to analyze the quality of a product during the manufacturing process. Because defective materials can lead to malfunctioning finished products, NDT is an essential quality assurance measure, especially in the manufacture of safety-critical components such as automotive B-pillars. NDT examines the quality without damaging the component or modifying the surface of the material. At this year's Blechexpo trade fair in Stuttgart, Fraunhofer IZFP will have an exhibit that demonstrates the nondestructive testing of high-strength automotive body parts using 3MA. The measurement results are available in a matter of seconds.

To minimize vehicle weight and fuel consumption while providing the highest level of crash safety, automotive bodies are reinforced with elements made from...

Im Focus: Kick-off for a new era of precision astronomy

The MICADO camera, a first light instrument for the European Extremely Large Telescope (E-ELT), has entered a new phase in the project: by agreeing to a Memorandum of Understanding, the partners in Germany, France, the Netherlands, Austria, and Italy, have all confirmed their participation. Following this milestone, the project's transition into its preliminary design phase was approved at a kick-off meeting held in Vienna. Two weeks earlier, on September 18, the consortium and the European Southern Observatory (ESO), which is building the telescope, have signed the corresponding collaboration agreement.

As the first dedicated camera for the E-ELT, MICADO will equip the giant telescope with a capability for diffraction-limited imaging at near-infrared...

Im Focus: Locusts at the wheel: University of Graz investigates collision detector inspired by insect eyes

Self-driving cars will be on our streets in the foreseeable future. In Graz, research is currently dedicated to an innovative driver assistance system that takes over control if there is a danger of collision. It was nature that inspired Dr Manfred Hartbauer from the Institute of Zoology at the University of Graz: in dangerous traffic situations, migratory locusts react around ten times faster than humans. Working together with an interdisciplinary team, Hartbauer is investigating an affordable collision detector that is equipped with artificial locust eyes and can recognise potential crashes in time, during both day and night.

Inspired by insects

All Focus news of the innovation-report >>>



Event News

EHFG 2015: Securing healthcare and sustainably strengthening healthcare systems

01.10.2015 | Event News

Conference in Brussels: Tracking and Tracing the Smallest Marine Life Forms

30.09.2015 | Event News

World Alzheimer`s Day – Professor Willnow: Clearer Insights into the Development of the Disease

17.09.2015 | Event News

Latest News

Listening to the Extragalactic Radio

13.10.2015 | Physics and Astronomy

Penn study stops vision loss in late-stage canine X-linked retinitis pigmentosa

13.10.2015 | Health and Medicine

MRCE orders Vectron Locomotives

13.10.2015 | Press release

More VideoLinks >>>