Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Intranasal insulin improves cognitive function in patients with type 2 diabetes

14.11.2013
In recent years, the link between type 2 diabetes and dementia has become widely recognized. Older individuals with diabetes develop Alzheimer's disease at an earlier age, and are more likely to develop vascular dementia than people who do not have diabetes.

Now, a small proof-of-concept study led by investigators at Beth Israel Deaconess Medical Center (BIDMC) offers promise of a new treatment for this widespread problem. Currently published on-line in the journal Diabetes Care, the study results show that a single dose of intranasal insulin can help improve cognitive function in patients with diabetes.

"We know that diabetes accelerates brain aging," explains first author Vera Novak, MD, PhD, an investigator in the Department of Neurology at BIDMC, who conducted this research as a faculty member in BIDMC's Department of Medicine. "If we consider that there are more than 45 million people with diabetes in the U.S. alone and that older adults are the fastest growing segment of the diabetes population, we realize what an extremely serious problem we're facing."

In the brain, insulin helps to regulate signaling and connections among neurons and also regulates vascular functions. Central insulin receptors are abundant and yet are mostly dependent upon insulin transport through the blood-brain barrier. Therefore, inadequate insulin delivery may affect perfusion and cortical activity in brain regions associated with high-energy demands, such as cognitive networks.

"Previous studies had suggested that augmenting cerebral insulin may enhance cognitive function," says Novak, an Associate Professor of Neurology at Harvard Medical School. Intranasal administration delivers insulin directly to the brain, bypassing the blood-brain barrier and reaching receptors in multiple brain regions within minutes after administration.

In this pilot study, the authors tested whether similar effects would be observed in patients with diabetes. Fifteen patients with diabetes and 14 healthy older adults, average age 62, were administered a single 40-unit dose of insulin or saline in a randomized order on two subsequent days. Measurements of brain function were then made using regional perfusion and vasodilatation with 3 Tesla MRI and neuropsychological evaluation of learning and memory.

"We observed in both the healthy subjects and the patients with diabetes that there was an improvement in both verbal learning and visual-spatial learning and memory after they received the insulin," explains Novak. Through imaging tests, the investigators also learned that these improvements were dependent on the brain's vascular function.

"Our findings provide preliminary evidence that intranasal insulin administration appears safe in older adults, and does not lead to low sugar levels," says Novak. "Intranasal insulin may potentially improve learning and memory in older adults with and without diabetes, through vascular mechanisms. However, larger and longer duration studies are needed to determine whether intranasal insulin may provide long-term benefits for memory in older patients with diabetes."

tudy coauthors include BIDMC investigators Andrew Galica and Bradley Manor; William Milberg of VA Boston Healthcare and Harvard Medical School; Medha Munshi of the Joslin Diabetes Center; Peter Novak of the University of Massachusetts Medical School; Paula Roberson of the University of Arkansas for Medical Sciences; Suzanne Craft of Wake Forest University School of Medicine and Amir Abduljalil of The Ohio State University; and Yin Hao of Peking University.

This study was funded by grants from the National Institute of Diabetes and Digestive and Kidney Diseases (5R21-DK-084463-02), the National Institute on Aging (1R01-AG-0287601-A2; R01-AG-027415); the National Institutes of Health (1KL2RR025757-04; 8KL2T^R000168-05;; 8UL1TR000170-05); Veterans Administration (B6796-C) as well as grants from the China Scholarship Council.

Beth Israel Deaconess Medical Center is a patient care, teaching and research affiliate of Harvard Medical School and currently ranks third in National Institutes of Health funding among independent hospitals nationwide.

BIDMC has a network of community partners that includes Beth Israel Deaconess Hospital-Milton, Beth Israel Deaconess Hospital-Needham, Anna Jaques Hospital, Cambridge Health Alliance, Lawrence General Hospital, Signature Health Care, Commonwealth Hematology-Oncology, Beth Israel Deaconess HealthCare, Community Care Alliance, and Atrius Health. BIDMC is also clinically affiliated with the Joslin Diabetes Center and Hebrew Senior Life and is a research partner of the Dana-Farber/Harvard Cancer Center. BIDMC is the official hospital of the Boston Red Sox. For more information, visit http://www.bidmc.org.

Bonnie Prescott | EurekAlert!
Further information:
http://www.bidmc.org

More articles from Health and Medicine:

nachricht How prenatal maternal infections may affect genetic factors in Autism spectrum disorder
22.03.2017 | University of California - San Diego

nachricht Camouflage apples
22.03.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>