Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Intranasal insulin improves cognitive function in patients with type 2 diabetes

14.11.2013
In recent years, the link between type 2 diabetes and dementia has become widely recognized. Older individuals with diabetes develop Alzheimer's disease at an earlier age, and are more likely to develop vascular dementia than people who do not have diabetes.

Now, a small proof-of-concept study led by investigators at Beth Israel Deaconess Medical Center (BIDMC) offers promise of a new treatment for this widespread problem. Currently published on-line in the journal Diabetes Care, the study results show that a single dose of intranasal insulin can help improve cognitive function in patients with diabetes.

"We know that diabetes accelerates brain aging," explains first author Vera Novak, MD, PhD, an investigator in the Department of Neurology at BIDMC, who conducted this research as a faculty member in BIDMC's Department of Medicine. "If we consider that there are more than 45 million people with diabetes in the U.S. alone and that older adults are the fastest growing segment of the diabetes population, we realize what an extremely serious problem we're facing."

In the brain, insulin helps to regulate signaling and connections among neurons and also regulates vascular functions. Central insulin receptors are abundant and yet are mostly dependent upon insulin transport through the blood-brain barrier. Therefore, inadequate insulin delivery may affect perfusion and cortical activity in brain regions associated with high-energy demands, such as cognitive networks.

"Previous studies had suggested that augmenting cerebral insulin may enhance cognitive function," says Novak, an Associate Professor of Neurology at Harvard Medical School. Intranasal administration delivers insulin directly to the brain, bypassing the blood-brain barrier and reaching receptors in multiple brain regions within minutes after administration.

In this pilot study, the authors tested whether similar effects would be observed in patients with diabetes. Fifteen patients with diabetes and 14 healthy older adults, average age 62, were administered a single 40-unit dose of insulin or saline in a randomized order on two subsequent days. Measurements of brain function were then made using regional perfusion and vasodilatation with 3 Tesla MRI and neuropsychological evaluation of learning and memory.

"We observed in both the healthy subjects and the patients with diabetes that there was an improvement in both verbal learning and visual-spatial learning and memory after they received the insulin," explains Novak. Through imaging tests, the investigators also learned that these improvements were dependent on the brain's vascular function.

"Our findings provide preliminary evidence that intranasal insulin administration appears safe in older adults, and does not lead to low sugar levels," says Novak. "Intranasal insulin may potentially improve learning and memory in older adults with and without diabetes, through vascular mechanisms. However, larger and longer duration studies are needed to determine whether intranasal insulin may provide long-term benefits for memory in older patients with diabetes."

tudy coauthors include BIDMC investigators Andrew Galica and Bradley Manor; William Milberg of VA Boston Healthcare and Harvard Medical School; Medha Munshi of the Joslin Diabetes Center; Peter Novak of the University of Massachusetts Medical School; Paula Roberson of the University of Arkansas for Medical Sciences; Suzanne Craft of Wake Forest University School of Medicine and Amir Abduljalil of The Ohio State University; and Yin Hao of Peking University.

This study was funded by grants from the National Institute of Diabetes and Digestive and Kidney Diseases (5R21-DK-084463-02), the National Institute on Aging (1R01-AG-0287601-A2; R01-AG-027415); the National Institutes of Health (1KL2RR025757-04; 8KL2T^R000168-05;; 8UL1TR000170-05); Veterans Administration (B6796-C) as well as grants from the China Scholarship Council.

Beth Israel Deaconess Medical Center is a patient care, teaching and research affiliate of Harvard Medical School and currently ranks third in National Institutes of Health funding among independent hospitals nationwide.

BIDMC has a network of community partners that includes Beth Israel Deaconess Hospital-Milton, Beth Israel Deaconess Hospital-Needham, Anna Jaques Hospital, Cambridge Health Alliance, Lawrence General Hospital, Signature Health Care, Commonwealth Hematology-Oncology, Beth Israel Deaconess HealthCare, Community Care Alliance, and Atrius Health. BIDMC is also clinically affiliated with the Joslin Diabetes Center and Hebrew Senior Life and is a research partner of the Dana-Farber/Harvard Cancer Center. BIDMC is the official hospital of the Boston Red Sox. For more information, visit http://www.bidmc.org.

Bonnie Prescott | EurekAlert!
Further information:
http://www.bidmc.org

More articles from Health and Medicine:

nachricht Speed data for the brain’s navigation system
06.12.2016 | Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE)

nachricht Study suggests possible new target for treating and preventing Alzheimer's
02.12.2016 | Oregon Health & Science University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>