Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Intestine crucial to function of immune cells, research shows

13.12.2011
Researchers at the University of Toronto have found an explanation for how the intestinal tract influences a key component of the immune system to prevent infection, offering a potential clue to the cause of autoimmune disorders like rheumatoid arthritis and multiple sclerosis.

"The findings shed light on the complex balance between beneficial and harmful bacteria in the gut," said Prof. Jennifer Gommerman, an Associate Professor in the Department of Immunology at U of T, whose findings were published online by the scientific journal, Nature.

"There has been a long-standing mystery of how certain cells can differentiate between and attack harmful bacteria in the intestine without damaging beneficial bacteria and other necessary cells. Our research is working to solve it."

The researchers found that some B cells—a type of white blood cell that produces antibodies—acquire functions that allow them to neutralize pathogens only while spending time in the gut. Moreover, this subset of B cells is critical to health.

"When we got rid of that B-cell function, the host was unable to clear a gut pathogen and there were other negative outcomes, so it appears to be very important for the cells to adopt this function in the gut," said Prof. Gommerman, whose lab conducted the research in mice.

Textbook immunology—based mostly on research done in the spleen, lymph nodes or other sterile sites distant from gut microbes—has suggested that B cells develop a specific immune function and rigidly maintain that identity. Over the last few years, however, some labs have shown the microbe-rich environment of the gut can induce flexibility in immune cell identity.

Prof. Gommerman and her colleagues, including trainees from her lab Drs. Jörg Fritz, Olga Rojas and Doug McCarthy, found that as B cells differentiate into plasma cells in the gut, they adopt characteristics of innate immune cells—despite their traditional association with the adaptive immune system. Specifically, they begin to look and act like inflammatory cells called monocytes, while maintaining their ability to produce a key antibody called Immunoglobulin A.

"What intrigued us was that this theme—B cells behaving like monocytes—had been seen before in fish and in vitro. But now we have a living example in a mammalian system, where this kind of bipotentiality is realized," said Prof. Gommerman.

This B-cell plasticity provides a potential explanation how cells dedicated to controlling pathogens can respond to a large burden of harmful bacteria without damaging beneficial bacteria and other cells essential for proper function of the intestine.

It also may explain how scientists had failed to appreciate the multi-functionality of some B cells. "There are classical markers immunologists use to identify B cells—receptors that are displayed on their surface—and most of them are absent from plasma cells," said Prof. Gommerman. "So in some cases, what people thought was a monocyte could have been a plasma cell because it had changed its surface identity, although monocytes play an important role in innate immunity as well."

This transformational ability, the researchers also found, is dependent on bacteria called commensal microflora that digests food and provides nutrients. That relationship highlights the importance of the gut in fighting infection, and begs the question of whether plasma cells trained in the gut to secrete specific anti-microbial molecules can play a role in other infectious disease scenarios, such as food-borne listeria infection.

It also opens a line of investigation into whether a systemic relationship exists between those anti-microbial molecules and healthy cells in sites remote from the intestine. Understanding the nature of that relationship could improve understanding of inflammatory mechanisms in autoimmune disorders such as lupus, rheumatoid arthritis and multiple sclerosis, in which immune cells attack and eventually destroy healthy tissue.

But the next step, said Prof. Gommerman, is to look at human samples for the same type of multi-potentiality they saw in rodent plasma cells that acquired their anti-microbial properties in the gut.

"We're really at the early stages of understanding what we call the microbiome in the gut," said Prof. Gommerman. "There is a role for plasma cells in many autoimmune diseases, and B cells can do a lot more than just make antibodies. We need to understand the full spectrum of their effects within the immune response."

The study was funded by the Canadian Institutes of Health Research, the Canada Foundation for Innovation, the Ontario Research Fund, the Austrian Academy of Sciences and the National Institutes of Health.

About the University of Toronto

Established in 1827, the University of Toronto has assembled one of the strongest research and teaching faculties in North America, presenting top students at all levels with an intellectual environment unmatched in breadth and depth on any other Canadian campus. U of T faculty co-author more research articles than their colleagues at any university in the US or Canada other than Harvard. As a measure of impact, U of T consistently ranks alongside the top five U.S. universities whose discoveries are most often cited by other researchers around the world. U of T faculty are also widely recognized for their teaching strengths and commitment to graduate supervision. www.utoronto.ca.

Jim Oldfield | EurekAlert!
Further information:
http://www.utoronto.ca

More articles from Health and Medicine:

nachricht NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures
17.11.2017 | National Institute of Standards and Technology (NIST)

nachricht High speed video recording precisely measures blood cell velocity
15.11.2017 | ITMO University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Antarctic landscape insights keep ice loss forecasts on the radar

20.11.2017 | Earth Sciences

Filling the gap: High-latitude volcanic eruptions also have global impact

20.11.2017 | Earth Sciences

Water world

20.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>