Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Intestine crucial to function of immune cells, research shows

13.12.2011
Researchers at the University of Toronto have found an explanation for how the intestinal tract influences a key component of the immune system to prevent infection, offering a potential clue to the cause of autoimmune disorders like rheumatoid arthritis and multiple sclerosis.

"The findings shed light on the complex balance between beneficial and harmful bacteria in the gut," said Prof. Jennifer Gommerman, an Associate Professor in the Department of Immunology at U of T, whose findings were published online by the scientific journal, Nature.

"There has been a long-standing mystery of how certain cells can differentiate between and attack harmful bacteria in the intestine without damaging beneficial bacteria and other necessary cells. Our research is working to solve it."

The researchers found that some B cells—a type of white blood cell that produces antibodies—acquire functions that allow them to neutralize pathogens only while spending time in the gut. Moreover, this subset of B cells is critical to health.

"When we got rid of that B-cell function, the host was unable to clear a gut pathogen and there were other negative outcomes, so it appears to be very important for the cells to adopt this function in the gut," said Prof. Gommerman, whose lab conducted the research in mice.

Textbook immunology—based mostly on research done in the spleen, lymph nodes or other sterile sites distant from gut microbes—has suggested that B cells develop a specific immune function and rigidly maintain that identity. Over the last few years, however, some labs have shown the microbe-rich environment of the gut can induce flexibility in immune cell identity.

Prof. Gommerman and her colleagues, including trainees from her lab Drs. Jörg Fritz, Olga Rojas and Doug McCarthy, found that as B cells differentiate into plasma cells in the gut, they adopt characteristics of innate immune cells—despite their traditional association with the adaptive immune system. Specifically, they begin to look and act like inflammatory cells called monocytes, while maintaining their ability to produce a key antibody called Immunoglobulin A.

"What intrigued us was that this theme—B cells behaving like monocytes—had been seen before in fish and in vitro. But now we have a living example in a mammalian system, where this kind of bipotentiality is realized," said Prof. Gommerman.

This B-cell plasticity provides a potential explanation how cells dedicated to controlling pathogens can respond to a large burden of harmful bacteria without damaging beneficial bacteria and other cells essential for proper function of the intestine.

It also may explain how scientists had failed to appreciate the multi-functionality of some B cells. "There are classical markers immunologists use to identify B cells—receptors that are displayed on their surface—and most of them are absent from plasma cells," said Prof. Gommerman. "So in some cases, what people thought was a monocyte could have been a plasma cell because it had changed its surface identity, although monocytes play an important role in innate immunity as well."

This transformational ability, the researchers also found, is dependent on bacteria called commensal microflora that digests food and provides nutrients. That relationship highlights the importance of the gut in fighting infection, and begs the question of whether plasma cells trained in the gut to secrete specific anti-microbial molecules can play a role in other infectious disease scenarios, such as food-borne listeria infection.

It also opens a line of investigation into whether a systemic relationship exists between those anti-microbial molecules and healthy cells in sites remote from the intestine. Understanding the nature of that relationship could improve understanding of inflammatory mechanisms in autoimmune disorders such as lupus, rheumatoid arthritis and multiple sclerosis, in which immune cells attack and eventually destroy healthy tissue.

But the next step, said Prof. Gommerman, is to look at human samples for the same type of multi-potentiality they saw in rodent plasma cells that acquired their anti-microbial properties in the gut.

"We're really at the early stages of understanding what we call the microbiome in the gut," said Prof. Gommerman. "There is a role for plasma cells in many autoimmune diseases, and B cells can do a lot more than just make antibodies. We need to understand the full spectrum of their effects within the immune response."

The study was funded by the Canadian Institutes of Health Research, the Canada Foundation for Innovation, the Ontario Research Fund, the Austrian Academy of Sciences and the National Institutes of Health.

About the University of Toronto

Established in 1827, the University of Toronto has assembled one of the strongest research and teaching faculties in North America, presenting top students at all levels with an intellectual environment unmatched in breadth and depth on any other Canadian campus. U of T faculty co-author more research articles than their colleagues at any university in the US or Canada other than Harvard. As a measure of impact, U of T consistently ranks alongside the top five U.S. universities whose discoveries are most often cited by other researchers around the world. U of T faculty are also widely recognized for their teaching strengths and commitment to graduate supervision. www.utoronto.ca.

Jim Oldfield | EurekAlert!
Further information:
http://www.utoronto.ca

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>