Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Intestinal bacteria influence food transit through the gut

21.11.2013
Food transit through the small intestine affects the body's absorption of nutrients and, consequently, our health.

The discovery that food transit time is regulated by a hormone indicates new ways to increase the intestinal absorption of nutrients, and thus potentially treat malnutrition.

One of the tasks of the gut microbiota is to break down essential nutrients from our diet to provide a usable energy source in the colon.

Researchers at the Sahlgrenska Academy, University of Gothenburg, have now shown that lack of energy in the colon leads to increased release of a hormone primarily associated with appetite control and insulin secretion, GLP-1.

Importantly, they also showed that the released GLP-1 regulates how quickly food passes through the small intestine. These findings may open up new possibilities to treat malnutrition and malnutrition-related diseases.

“Food transit through the small intestine is a complex balancing act, in which the gut lining must be given time to absorb nutrients but without allowing pathogenic bacteria sufficient time to colonize the small intestine. We have discovered that food transit through the small intestine is regulated by a specific hormone called GLP-1, which is linked to our glucose metabolism and appetite,” says Anita Wichmann, postdoctoral researcher at the Sahlgrenska Academy and the study's lead author.

The study, published in the prestigious journal Cell Host & Microbe, was led by Professor Fredrik Bäckhed, who heads an internationally recognized research group that investigates the links between the gut microbiota and regulation of the body's metabolism.

“We are continuously discovering new functions that are regulated by the gut microbiota, which highlight its incredibly important function for health and development of diseases,” he says.

The article Microbial Modulation of Energy Availability in the Colon Regulates Intestinal Transit was published in Cell Host & Microbe on the 13 November.

Contact:
Fredrik Bäckhed, Professor at the Sahlgrenska Academy and Director of the Wallenberg Laboratory, University of Gothenburg
031-342 7833
070-2182355
fredrik.backhed@wlab.gu.se
http://www.wlab.gu.se/backhed
Weitere Informationen:
http://www.cell.com/cell-host-microbe/abstract/S1931-3128(13)00365-X

Torsten Arpi | idw
Further information:
http://www.gu.se

Further reports about: GLP-1 cell death intestinal bacteria malnutrition microbe

More articles from Health and Medicine:

nachricht Antibiotic effective against drug-resistant bacteria in pediatric skin infections
17.02.2017 | University of California - San Diego

nachricht Tiny magnetic implant offers new drug delivery method
14.02.2017 | University of British Columbia

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>