Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Intestinal bacteria influence food transit through the gut

21.11.2013
Food transit through the small intestine affects the body's absorption of nutrients and, consequently, our health.

The discovery that food transit time is regulated by a hormone indicates new ways to increase the intestinal absorption of nutrients, and thus potentially treat malnutrition.

One of the tasks of the gut microbiota is to break down essential nutrients from our diet to provide a usable energy source in the colon.

Researchers at the Sahlgrenska Academy, University of Gothenburg, have now shown that lack of energy in the colon leads to increased release of a hormone primarily associated with appetite control and insulin secretion, GLP-1.

Importantly, they also showed that the released GLP-1 regulates how quickly food passes through the small intestine. These findings may open up new possibilities to treat malnutrition and malnutrition-related diseases.

“Food transit through the small intestine is a complex balancing act, in which the gut lining must be given time to absorb nutrients but without allowing pathogenic bacteria sufficient time to colonize the small intestine. We have discovered that food transit through the small intestine is regulated by a specific hormone called GLP-1, which is linked to our glucose metabolism and appetite,” says Anita Wichmann, postdoctoral researcher at the Sahlgrenska Academy and the study's lead author.

The study, published in the prestigious journal Cell Host & Microbe, was led by Professor Fredrik Bäckhed, who heads an internationally recognized research group that investigates the links between the gut microbiota and regulation of the body's metabolism.

“We are continuously discovering new functions that are regulated by the gut microbiota, which highlight its incredibly important function for health and development of diseases,” he says.

The article Microbial Modulation of Energy Availability in the Colon Regulates Intestinal Transit was published in Cell Host & Microbe on the 13 November.

Contact:
Fredrik Bäckhed, Professor at the Sahlgrenska Academy and Director of the Wallenberg Laboratory, University of Gothenburg
031-342 7833
070-2182355
fredrik.backhed@wlab.gu.se
http://www.wlab.gu.se/backhed
Weitere Informationen:
http://www.cell.com/cell-host-microbe/abstract/S1931-3128(13)00365-X

Torsten Arpi | idw
Further information:
http://www.gu.se

Further reports about: GLP-1 cell death intestinal bacteria malnutrition microbe

More articles from Health and Medicine:

nachricht Nanoparticles as a Solution against Antibiotic Resistance?
15.12.2017 | Friedrich-Schiller-Universität Jena

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>