Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

International network to study the causes behind IBS

28.01.2013
Europe-wide network GENIEUR including researchers from Sahlgrenska Academy, University of Gothenburg, Sweden, and Karolinska Institutet, Sweden, launch program for understanding the causes and improving the diagnosis and treatment of irritable bowel syndrome.

For the first time, scientists from 19 European countries have joined forces to form an interdisciplinary network for investigating the causes of irritable bowel syndrome (IBS), in the hope to improve its diagnosis and treatment.

The European Science Foundation funded network GENIEUR (Genes in Irritable Bowel Syndrome Europe) aims to identify genes and DNA variants that may contribute to increase one’s susceptibility to develop bowel symptoms.

Today, IBS affects more than 10 percent of the general population in Sweden, and is the most common cause of work absenteeism after common colds. Its diagnosis is based on a combination of symptoms including abdominal pain, bloating, constipation, and diarrhea, which all strongly impact patients’ quality of life. Because of the unknown etiology there is currently no cure, and remedies can only alleviate symptoms and are effective in some patients but not in others.

Over 70 research groups participate in the GENIEUR network, which is headed by Dr Beate Niesler at Heidelberg University Hospital’s Institute of Human Genetics, and includes research teams from the Sahlgrenska Academy, University of Gothenburg and Karolinska Institutet.

“Our goal is to use the knowledge of researchers with different expertise in order to solve the mystery of IBS”, says Professor Magnus Simren, from the Department of Internal Medicine and Clinical Nutrition at the Sahlgrenska Academy, University of Gothenburg, who is also co-Chair of the GENIEUR initiative and head of a research group focusing on mechanisms underlying the symptoms of IBS.

“IBS is only modestly inherited, and there are so far very few examples of known predisposing genes” adds docent Mauro D’Amato from Karolinska Institutet’s Department of Biosciences and Nutrition, member of the GENIEUR management committee and leader of the team who discovered the involvement of TNFSF15 and NPSR1 genes in IBS. “We need very large numbers of thoroughly-characterized patients in order to increase our chances to detect true genetic predisposing factors”.

For this purpose, the teams in GENIEUR aim to establish a large IBS biobank of clinical material from patients and healthy controls.

In so doing, they are also aiming to identify reliable biomarkers and compile a catalogue of criteria to precisely assign patients to individual clinical subgroups.

Besides gastroenterologists and human geneticists, the network also includes nutritionists, psychiatrists, immunologists, physiologists, neurobiologists, microbiologists, bioinformatic specialists and epidemiologists.

“With this broad knowledge included, the potential to achieve clinically important discoveries for this large group of patients is tremendous” says Prof Simren.

More information is available at www.genieur.eu.

For further information, please contact:
Professor Magnus Simren, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg

magnus.simren@medicine.gu.se

Docent Mauro D’Amato, Department of Biosciences and Nutrition, Karolinska Institutet, mauro.damato@ki.se

Annika Koldenius | idw
Further information:
http://www.gu.se

More articles from Health and Medicine:

nachricht Plasmonic biosensors enable development of new easy-to-use health tests
14.12.2017 | Aalto University

nachricht ASU scientists develop new, rapid pipeline for antimicrobials
14.12.2017 | Arizona State University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>