Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


International network to study the causes behind IBS

Europe-wide network GENIEUR including researchers from Sahlgrenska Academy, University of Gothenburg, Sweden, and Karolinska Institutet, Sweden, launch program for understanding the causes and improving the diagnosis and treatment of irritable bowel syndrome.

For the first time, scientists from 19 European countries have joined forces to form an interdisciplinary network for investigating the causes of irritable bowel syndrome (IBS), in the hope to improve its diagnosis and treatment.

The European Science Foundation funded network GENIEUR (Genes in Irritable Bowel Syndrome Europe) aims to identify genes and DNA variants that may contribute to increase one’s susceptibility to develop bowel symptoms.

Today, IBS affects more than 10 percent of the general population in Sweden, and is the most common cause of work absenteeism after common colds. Its diagnosis is based on a combination of symptoms including abdominal pain, bloating, constipation, and diarrhea, which all strongly impact patients’ quality of life. Because of the unknown etiology there is currently no cure, and remedies can only alleviate symptoms and are effective in some patients but not in others.

Over 70 research groups participate in the GENIEUR network, which is headed by Dr Beate Niesler at Heidelberg University Hospital’s Institute of Human Genetics, and includes research teams from the Sahlgrenska Academy, University of Gothenburg and Karolinska Institutet.

“Our goal is to use the knowledge of researchers with different expertise in order to solve the mystery of IBS”, says Professor Magnus Simren, from the Department of Internal Medicine and Clinical Nutrition at the Sahlgrenska Academy, University of Gothenburg, who is also co-Chair of the GENIEUR initiative and head of a research group focusing on mechanisms underlying the symptoms of IBS.

“IBS is only modestly inherited, and there are so far very few examples of known predisposing genes” adds docent Mauro D’Amato from Karolinska Institutet’s Department of Biosciences and Nutrition, member of the GENIEUR management committee and leader of the team who discovered the involvement of TNFSF15 and NPSR1 genes in IBS. “We need very large numbers of thoroughly-characterized patients in order to increase our chances to detect true genetic predisposing factors”.

For this purpose, the teams in GENIEUR aim to establish a large IBS biobank of clinical material from patients and healthy controls.

In so doing, they are also aiming to identify reliable biomarkers and compile a catalogue of criteria to precisely assign patients to individual clinical subgroups.

Besides gastroenterologists and human geneticists, the network also includes nutritionists, psychiatrists, immunologists, physiologists, neurobiologists, microbiologists, bioinformatic specialists and epidemiologists.

“With this broad knowledge included, the potential to achieve clinically important discoveries for this large group of patients is tremendous” says Prof Simren.

More information is available at

For further information, please contact:
Professor Magnus Simren, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg

Docent Mauro D’Amato, Department of Biosciences and Nutrition, Karolinska Institutet,

Annika Koldenius | idw
Further information:

More articles from Health and Medicine:

nachricht ARTORG and Inselspital develop artificial pancreas
26.11.2015 | Universitätsspital Bern

nachricht Laboratory study: Scientists from Cologne explore a new approach to prevent newborn epilepsies
24.11.2015 | Deutsches Zentrum für Neurodegenerative Erkrankungen e.V. (DZNE)

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate study finds evidence of global shift in the 1980s

Planet Earth experienced a global climate shift in the late 1980s on an unprecedented scale, fuelled by anthropogenic warming and a volcanic eruption, according to new research published this week.

Scientists say that a major step change, or ‘regime shift’, in the Earth’s biophysical systems, from the upper atmosphere to the depths of the ocean and from...

Im Focus: Innovative Photovoltaics – from the Lab to the Façade

Fraunhofer ISE Demonstrates New Cell and Module Technologies on its Outer Building Façade

The Fraunhofer Institute for Solar Energy Systems ISE has installed 70 photovoltaic modules on the outer façade of one of its lab buildings. The modules were...

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

Im Focus: Laser process simulation available as app for first time

In laser material processing, the simulation of processes has made great strides over the past few years. Today, the software can predict relatively well what will happen on the workpiece. Unfortunately, it is also highly complex and requires a lot of computing time. Thanks to clever simplification, experts from Fraunhofer ILT are now able to offer the first-ever simulation software that calculates processes in real time and also runs on tablet computers and smartphones. The fast software enables users to do without expensive experiments and to find optimum process parameters even more effectively.

Before now, the reliable simulation of laser processes was a job for experts. Armed with sophisticated software packages and after many hours on computer...

Im Focus: Quantum Simulation: A Better Understanding of Magnetism

Heidelberg physicists use ultracold atoms to imitate the behaviour of electrons in a solid

Researchers at Heidelberg University have devised a new way to study the phenomenon of magnetism. Using ultracold atoms at near absolute zero, they prepared a...

All Focus news of the innovation-report >>>



Event News

Fraunhofer’s Urban Futures Conference: 2 days in the city of the future

25.11.2015 | Event News

Gluten oder nicht Gluten? Überempfindlichkeit auf Weizen kann unterschiedliche Ursachen haben

17.11.2015 | Event News

Art Collection Deutsche Börse zeigt Ausstellung „Traces of Disorder“

21.10.2015 | Event News

Latest News

Siemens helps transform the main wastewater treatment plant in Vienna into a green power plant

30.11.2015 | Power and Electrical Engineering

New Analysis Technique for Chiral Activity in Molecules

30.11.2015 | Life Sciences

Siemens to supply 126 megawatts to onshore wind power plants in Scotland

27.11.2015 | Press release

More VideoLinks >>>