Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

International network to study the causes behind IBS

28.01.2013
Europe-wide network GENIEUR including researchers from Sahlgrenska Academy, University of Gothenburg, Sweden, and Karolinska Institutet, Sweden, launch program for understanding the causes and improving the diagnosis and treatment of irritable bowel syndrome.

For the first time, scientists from 19 European countries have joined forces to form an interdisciplinary network for investigating the causes of irritable bowel syndrome (IBS), in the hope to improve its diagnosis and treatment.

The European Science Foundation funded network GENIEUR (Genes in Irritable Bowel Syndrome Europe) aims to identify genes and DNA variants that may contribute to increase one’s susceptibility to develop bowel symptoms.

Today, IBS affects more than 10 percent of the general population in Sweden, and is the most common cause of work absenteeism after common colds. Its diagnosis is based on a combination of symptoms including abdominal pain, bloating, constipation, and diarrhea, which all strongly impact patients’ quality of life. Because of the unknown etiology there is currently no cure, and remedies can only alleviate symptoms and are effective in some patients but not in others.

Over 70 research groups participate in the GENIEUR network, which is headed by Dr Beate Niesler at Heidelberg University Hospital’s Institute of Human Genetics, and includes research teams from the Sahlgrenska Academy, University of Gothenburg and Karolinska Institutet.

“Our goal is to use the knowledge of researchers with different expertise in order to solve the mystery of IBS”, says Professor Magnus Simren, from the Department of Internal Medicine and Clinical Nutrition at the Sahlgrenska Academy, University of Gothenburg, who is also co-Chair of the GENIEUR initiative and head of a research group focusing on mechanisms underlying the symptoms of IBS.

“IBS is only modestly inherited, and there are so far very few examples of known predisposing genes” adds docent Mauro D’Amato from Karolinska Institutet’s Department of Biosciences and Nutrition, member of the GENIEUR management committee and leader of the team who discovered the involvement of TNFSF15 and NPSR1 genes in IBS. “We need very large numbers of thoroughly-characterized patients in order to increase our chances to detect true genetic predisposing factors”.

For this purpose, the teams in GENIEUR aim to establish a large IBS biobank of clinical material from patients and healthy controls.

In so doing, they are also aiming to identify reliable biomarkers and compile a catalogue of criteria to precisely assign patients to individual clinical subgroups.

Besides gastroenterologists and human geneticists, the network also includes nutritionists, psychiatrists, immunologists, physiologists, neurobiologists, microbiologists, bioinformatic specialists and epidemiologists.

“With this broad knowledge included, the potential to achieve clinically important discoveries for this large group of patients is tremendous” says Prof Simren.

More information is available at www.genieur.eu.

For further information, please contact:
Professor Magnus Simren, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg

magnus.simren@medicine.gu.se

Docent Mauro D’Amato, Department of Biosciences and Nutrition, Karolinska Institutet, mauro.damato@ki.se

Annika Koldenius | idw
Further information:
http://www.gu.se

More articles from Health and Medicine:

nachricht On track to heal leukaemia
18.01.2017 | Universitätsspital Bern

nachricht Penn vet research identifies new target for taming Ebola
12.01.2017 | University of Pennsylvania

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>