Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Intermountain study finds length of DNA strands can predict life expectancy

11.03.2013
Findings may help patients at risk

Can the length of strands of DNA in patients with heart disease predict their life expectancy?

Researchers from the Intermountain Heart Institute at Intermountain Medical Center in Salt Lake City, who studied the DNA of more that 3,500 patients with heart disease, say yes it can.

In the new study, presented Saturday, March 9, at the American College of Cardiology's Annual Scientific Session in San Francisco, the researchers were able to predict survival rates among patients with heart disease based on the length of strands of DNA found on the ends of chromosomes known as telomeres—the longer the patient's telomeres, the greater the chance of living a longer life.

The study is one of 17 studies from the Intermountain Heart Institute at Intermountain Medical Center that are being presented at the scientific session, which is being attended by thousands of cardiologists and heart experts from around the world.

Previous research has shown that telomere length can be used as a measure of age, but these expanded findings suggest that telomere length may also predict the life expectancy of patients with heart disease.

Telomeres protect the ends of chromosome from becoming damaged. As people get older, their telomeres get shorter until the cell is no longer able to divide. Shortened telomeres are associated with age-related diseases such as heart disease or cancer, as well as exposure to oxidative damage from stress, smoking, air pollution, or conditions that accelerate biologic aging.

"Chromosomes by their nature get shorter as we get older," said John Carlquist, PhD, director of the Intermountain Heart Institute Genetics Lab. "Once they become too short, they no longer function properly, signaling the end of life for the cell. And when cells reach this stage, the patient's risk for age-associated diseases increases dramatically."

Dr. Carlquist and his colleagues from the Intermountain Heart Institute at Intermountain Medical Center tested the DNA samples from more than 3,500 heart attack and stroke patients.

"Our research shows that if we statistically adjust for age, patients with longer telomeres live longer, suggesting that telomere length is more than just a measure of age, but may also indicate the probability for survival. Longer telomere length directly correlate with the likelihood for a longer life—even for patients with heart disease," said Dr. Carlquist.

Dr. Carlquist and his colleagues from the Intermountain Heart Institute at Intermountain Medical Center drew on two unique resources that offer unparalleled opportunity for researchers to study the effects of telomere length and survival rates of heart patients:

An archive of peripheral blood DNA samples collected from almost 30,000 heart patients, with as much as 20 years of follow-up clinical and survival data. This is stored in Intermountain Healthcare's world-renowned computerized medical informatics record system.

"With so many samples and very complete electronic records, it's a unique resource," said Dr. Carlquist. "It's unmatched in the world, and it allows us to measure the rate of change in the length of a patient's telomeres over time rather than just a snapshot in time, which is typical for most studies."

The opportunity to work with experts from around the world, including Richard Cawthon, MD, PhD, who's an international expert on telomere measurement and function.

"I believe telomere length could be used in the future as a way to measure the effectiveness of heart care treatment," said Dr. Carlquist. "We can already test cholesterol and blood pressure of a patient to see how treatment is working, but this could give us a deeper view into how the treatment is affecting the body and whether or not the treatment is working."

Other members of the research team include: Stacey Knight, PhD; Benjamin Horne, PhD; Jeffrey Rollo, BS; John Huntinghouse, BS; Brent Muhlestein, MD; and Jeffrey Anderson, MD.

The Intermountain Medical Center Heart Institute at Intermountain Medical Center in Murray, Utah, is one of the premier cardiac centers in the country, and serves as the flagship center for the Intermountain Healthcare system, based in Salt Lake City.

Jess C. Gomez | EurekAlert!
Further information:
http://www.imail.org

More articles from Health and Medicine:

nachricht Organ-on-a-chip mimics heart's biomechanical properties
23.02.2017 | Vanderbilt University

nachricht Researchers identify cause of hereditary skeletal muscle disorder
22.02.2017 | Klinikum der Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>