Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Interactions between drugs can also be measured at lowest doses

11.04.2013
Interaction at minimal dose identical to therapeutically effective dose / Pharmacological studies becoming more reliable / Study published in Clinical Pharmacology & Therapeutics

Clinical pharmacologists at Heidelberg University Hospital have achieved major progress for improving the reliability of drugs. In a pharmacological study, they showed for the first time that interactions between drugs can be detected with minute doses in the range of nanograms.

However, at these low doses, the drugs are neither effective nor do they have side effects. This means that studies on interactions occurring in drug combinations can be conducted practically without posing risks or negative impacts on the participants. This is true not only for healthy volunteers, as has been observed to date, but also for patients. The study was published in the medical journal Clinical Pharmacology & Therapeutics.

“Many chronically ill or elderly patients today take several different drugs. Around two percent of all hospital stays in Germany are the result of interactions between the drugs,” said Professor Walter E. Haefeli, Medical Director of the Department for Clinical Pharmacology and Pharmacoepidemiology at Heidelberg University, where the new technique of “nano-dosing” has been developed and tested. “Many interactions could be avoided if we were aware of them and took them into account.”
Drug combinations rarely studied for interactions

However, very few drug combinations have been systematically tested for interactions to date. “Many risks remain unknown to date and need to be studied,” Prof. Haefeli explained. After initial tests conducted in animals, combinations are currentlybeing studied in healthy participants – with the usual therapeutic doses. Depending on the drug, this can strongly impact the body. Furthermore, a healthy person may react differently to a drug than a sick person does. This means that study findings can only be transferred to a limited extent.

Using mass spectrometry, an ultrasensitive technique, the team led by Prof. Haefeli succeeded in drastically reducing the dose for studies on interactions in study participants. Mass spectrometers are so sensitive that they are able to identify the drug in a single drop of blood. The scientists conducted a study on interactions in 12 healthy test persons taking the fungicide ketoconazole and the sedative midazolam simultaneously. For the study, they administered midazolamdoses of 0.0000001 g, which was 30,000 times lower than the amount used for therapy. Comparisons with higher doses revealed that the drugs behaved identically at all concentrations. Therefore, even a minimal concentration in the body is sufficient to reliably predict the extent of the interaction during normal use.
Inhibition of the liver enzyme measurable in the nanogram range

With the help of ultrasensitive mass spectrometers, the speed with which a drug is degraded can be measured. They are used wherever small amounts need to be detected in liquids, e.g., contamination in drinking water, doping agents or environmental toxins. To this end, a small amount of blood or other body fluid is withdrawn after certain time intervals in order to determine the remaining concentration of the drug. The mass spectrometer sorts the molecules and determines their concentration. Based on their characteristic properties, the drugs can be reliably identified. “For the first time, we have proven that with this technique, we are able to find drugs in the blood even at extremely low doses, and that we can quantitatively determine them and identify their interactions,” Prof. Haefeli said.

In the published study, the team investigated the interaction between the sedative midazolam, which is metabolized in the liver by the protein cytochrome P450 3A, and the fungicide ketoconazole, a well-known inhibitor of this cytochrome. The inhibition of the cytochrome and, in turn, the reduced degradation of midazolam, were already precisely measured in the nanogram dose. This interaction in particular plays an important role for patients who need to take several drugs simultaneously. Many drugs inhibit this enzyme, which metabolises around half of all regularly used medicines. However, if a drug is degraded too slowly, at normal doses, it accumulates in the body and, in the worst case, can cause toxicity.

Further studies planned

Prof. Haefeli and his team are now testing the new method in patients. “Since we can use minimal drug doses, these studies are also safe for patients,” Prof. Haefeli explained. Heidelberg University pharmacologists will also examine the interactions of other medications that influence other metabolic enzymes. “The method could also be used in the many studies in which interactions are relevant for approval by the authorities, for instance,” said Prof. Haefeli, looking toward the future.

Literature:
Burhenne J, Halama B, Maurer M, Riedel K-D, Hohmann N, Mikus G, Haefeli WE: Quantification of femtomolar concentrations of the CYP3A substrate midazolam and its main metabolite 1’-hydroxymidazolam in human plasma using ultra-performance liquid chromatography coupled to tandem mass spectrometry. Anal Bioanal Chem 2012;402:2439-50.

Halama B, Hohmann N, Burhenne J, Weiss J, Mikus G, Haefeli WE: A nanogram dose of the CYP3A probe substrate midazolam to evaluate drug interactions. Clin Pharmacol Ther; accepted article preview online February 8, 2013; doi:10.1038/clpt.2013.
More information is available on the web:
Dept. of Clinical Pharmacology and Pharmacoepidemiology:
http://www.klinikum.uni-heidelberg.de/index.php?id=117526&L=1

Contact:
Prof. Walter E. Haefeli, MD
Head of Dept. of Clinical Pharmacology and Pharmacoepidemiology
phone: +49 6221 56 8740
email: walter.emil.haefeli@med.uni-heidelberg.de

Heidelberg University Hospital and Medical Faculty:
Internationally recognized patient care, research, and teaching
Heidelberg University Hospital is one of the largest and most prestigious medical centers in Germany. The Medical Faculty of Heidelberg University belongs to the internationally most renowned biomedical research institutions in Europe. Both institutions have the common goal of developing new therapies and implementing them rapidly for patients. With about 11,000 employees, training and qualification is an important issue. Every year, around 510,000 patients are treated on an inpatient or outpatient basis in more than 50 clinics and departments with 1,900 beds. Currently, about 3,500 future physicians are studying in Heidelberg; the reform Heidelberg Curriculum Medicinale (HeiCuMed) is one of the top medical training programs in Germany.

Requests by journalists:
Dr. Annette Tuffs
Director, Corporate Communication/Public Relations
University Hospital and
Medical Faculty of Heidelberg
Im Neuenheimer Feld 672
69120 Heidelberg
Germany
phone: +49 6221 / 56 45 36
fax: +49 6221 / 56 45 44
e-mail: annette.tuffs@med.uni-heidelberg.de

Selected english press releases online:
http://www.klinikum.uni-heidelberg.de/presse

Dr. Annette Tuffs | idw
Further information:
http://www.uni-heidelberg.de

More articles from Health and Medicine:

nachricht Millions through license revenues
27.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht New High-Performance Center Translational Medical Engineering
26.04.2017 | Fraunhofer ITEM

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>