Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Interactions between drugs can also be measured at lowest doses

Interaction at minimal dose identical to therapeutically effective dose / Pharmacological studies becoming more reliable / Study published in Clinical Pharmacology & Therapeutics

Clinical pharmacologists at Heidelberg University Hospital have achieved major progress for improving the reliability of drugs. In a pharmacological study, they showed for the first time that interactions between drugs can be detected with minute doses in the range of nanograms.

However, at these low doses, the drugs are neither effective nor do they have side effects. This means that studies on interactions occurring in drug combinations can be conducted practically without posing risks or negative impacts on the participants. This is true not only for healthy volunteers, as has been observed to date, but also for patients. The study was published in the medical journal Clinical Pharmacology & Therapeutics.

“Many chronically ill or elderly patients today take several different drugs. Around two percent of all hospital stays in Germany are the result of interactions between the drugs,” said Professor Walter E. Haefeli, Medical Director of the Department for Clinical Pharmacology and Pharmacoepidemiology at Heidelberg University, where the new technique of “nano-dosing” has been developed and tested. “Many interactions could be avoided if we were aware of them and took them into account.”
Drug combinations rarely studied for interactions

However, very few drug combinations have been systematically tested for interactions to date. “Many risks remain unknown to date and need to be studied,” Prof. Haefeli explained. After initial tests conducted in animals, combinations are currentlybeing studied in healthy participants – with the usual therapeutic doses. Depending on the drug, this can strongly impact the body. Furthermore, a healthy person may react differently to a drug than a sick person does. This means that study findings can only be transferred to a limited extent.

Using mass spectrometry, an ultrasensitive technique, the team led by Prof. Haefeli succeeded in drastically reducing the dose for studies on interactions in study participants. Mass spectrometers are so sensitive that they are able to identify the drug in a single drop of blood. The scientists conducted a study on interactions in 12 healthy test persons taking the fungicide ketoconazole and the sedative midazolam simultaneously. For the study, they administered midazolamdoses of 0.0000001 g, which was 30,000 times lower than the amount used for therapy. Comparisons with higher doses revealed that the drugs behaved identically at all concentrations. Therefore, even a minimal concentration in the body is sufficient to reliably predict the extent of the interaction during normal use.
Inhibition of the liver enzyme measurable in the nanogram range

With the help of ultrasensitive mass spectrometers, the speed with which a drug is degraded can be measured. They are used wherever small amounts need to be detected in liquids, e.g., contamination in drinking water, doping agents or environmental toxins. To this end, a small amount of blood or other body fluid is withdrawn after certain time intervals in order to determine the remaining concentration of the drug. The mass spectrometer sorts the molecules and determines their concentration. Based on their characteristic properties, the drugs can be reliably identified. “For the first time, we have proven that with this technique, we are able to find drugs in the blood even at extremely low doses, and that we can quantitatively determine them and identify their interactions,” Prof. Haefeli said.

In the published study, the team investigated the interaction between the sedative midazolam, which is metabolized in the liver by the protein cytochrome P450 3A, and the fungicide ketoconazole, a well-known inhibitor of this cytochrome. The inhibition of the cytochrome and, in turn, the reduced degradation of midazolam, were already precisely measured in the nanogram dose. This interaction in particular plays an important role for patients who need to take several drugs simultaneously. Many drugs inhibit this enzyme, which metabolises around half of all regularly used medicines. However, if a drug is degraded too slowly, at normal doses, it accumulates in the body and, in the worst case, can cause toxicity.

Further studies planned

Prof. Haefeli and his team are now testing the new method in patients. “Since we can use minimal drug doses, these studies are also safe for patients,” Prof. Haefeli explained. Heidelberg University pharmacologists will also examine the interactions of other medications that influence other metabolic enzymes. “The method could also be used in the many studies in which interactions are relevant for approval by the authorities, for instance,” said Prof. Haefeli, looking toward the future.

Burhenne J, Halama B, Maurer M, Riedel K-D, Hohmann N, Mikus G, Haefeli WE: Quantification of femtomolar concentrations of the CYP3A substrate midazolam and its main metabolite 1’-hydroxymidazolam in human plasma using ultra-performance liquid chromatography coupled to tandem mass spectrometry. Anal Bioanal Chem 2012;402:2439-50.

Halama B, Hohmann N, Burhenne J, Weiss J, Mikus G, Haefeli WE: A nanogram dose of the CYP3A probe substrate midazolam to evaluate drug interactions. Clin Pharmacol Ther; accepted article preview online February 8, 2013; doi:10.1038/clpt.2013.
More information is available on the web:
Dept. of Clinical Pharmacology and Pharmacoepidemiology:

Prof. Walter E. Haefeli, MD
Head of Dept. of Clinical Pharmacology and Pharmacoepidemiology
phone: +49 6221 56 8740

Heidelberg University Hospital and Medical Faculty:
Internationally recognized patient care, research, and teaching
Heidelberg University Hospital is one of the largest and most prestigious medical centers in Germany. The Medical Faculty of Heidelberg University belongs to the internationally most renowned biomedical research institutions in Europe. Both institutions have the common goal of developing new therapies and implementing them rapidly for patients. With about 11,000 employees, training and qualification is an important issue. Every year, around 510,000 patients are treated on an inpatient or outpatient basis in more than 50 clinics and departments with 1,900 beds. Currently, about 3,500 future physicians are studying in Heidelberg; the reform Heidelberg Curriculum Medicinale (HeiCuMed) is one of the top medical training programs in Germany.

Requests by journalists:
Dr. Annette Tuffs
Director, Corporate Communication/Public Relations
University Hospital and
Medical Faculty of Heidelberg
Im Neuenheimer Feld 672
69120 Heidelberg
phone: +49 6221 / 56 45 36
fax: +49 6221 / 56 45 44

Selected english press releases online:

Dr. Annette Tuffs | idw
Further information:

More articles from Health and Medicine:

nachricht NIH scientists describe potential antibody treatment for multidrug-resistant K. pneumoniae
14.03.2018 | NIH/National Institute of Allergy and Infectious Diseases

nachricht Researchers identify key step in viral replication
13.03.2018 | University of Pittsburgh Schools of the Health Sciences

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>