Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Interactions between drugs can also be measured at lowest doses

11.04.2013
Interaction at minimal dose identical to therapeutically effective dose / Pharmacological studies becoming more reliable / Study published in Clinical Pharmacology & Therapeutics

Clinical pharmacologists at Heidelberg University Hospital have achieved major progress for improving the reliability of drugs. In a pharmacological study, they showed for the first time that interactions between drugs can be detected with minute doses in the range of nanograms.

However, at these low doses, the drugs are neither effective nor do they have side effects. This means that studies on interactions occurring in drug combinations can be conducted practically without posing risks or negative impacts on the participants. This is true not only for healthy volunteers, as has been observed to date, but also for patients. The study was published in the medical journal Clinical Pharmacology & Therapeutics.

“Many chronically ill or elderly patients today take several different drugs. Around two percent of all hospital stays in Germany are the result of interactions between the drugs,” said Professor Walter E. Haefeli, Medical Director of the Department for Clinical Pharmacology and Pharmacoepidemiology at Heidelberg University, where the new technique of “nano-dosing” has been developed and tested. “Many interactions could be avoided if we were aware of them and took them into account.”
Drug combinations rarely studied for interactions

However, very few drug combinations have been systematically tested for interactions to date. “Many risks remain unknown to date and need to be studied,” Prof. Haefeli explained. After initial tests conducted in animals, combinations are currentlybeing studied in healthy participants – with the usual therapeutic doses. Depending on the drug, this can strongly impact the body. Furthermore, a healthy person may react differently to a drug than a sick person does. This means that study findings can only be transferred to a limited extent.

Using mass spectrometry, an ultrasensitive technique, the team led by Prof. Haefeli succeeded in drastically reducing the dose for studies on interactions in study participants. Mass spectrometers are so sensitive that they are able to identify the drug in a single drop of blood. The scientists conducted a study on interactions in 12 healthy test persons taking the fungicide ketoconazole and the sedative midazolam simultaneously. For the study, they administered midazolamdoses of 0.0000001 g, which was 30,000 times lower than the amount used for therapy. Comparisons with higher doses revealed that the drugs behaved identically at all concentrations. Therefore, even a minimal concentration in the body is sufficient to reliably predict the extent of the interaction during normal use.
Inhibition of the liver enzyme measurable in the nanogram range

With the help of ultrasensitive mass spectrometers, the speed with which a drug is degraded can be measured. They are used wherever small amounts need to be detected in liquids, e.g., contamination in drinking water, doping agents or environmental toxins. To this end, a small amount of blood or other body fluid is withdrawn after certain time intervals in order to determine the remaining concentration of the drug. The mass spectrometer sorts the molecules and determines their concentration. Based on their characteristic properties, the drugs can be reliably identified. “For the first time, we have proven that with this technique, we are able to find drugs in the blood even at extremely low doses, and that we can quantitatively determine them and identify their interactions,” Prof. Haefeli said.

In the published study, the team investigated the interaction between the sedative midazolam, which is metabolized in the liver by the protein cytochrome P450 3A, and the fungicide ketoconazole, a well-known inhibitor of this cytochrome. The inhibition of the cytochrome and, in turn, the reduced degradation of midazolam, were already precisely measured in the nanogram dose. This interaction in particular plays an important role for patients who need to take several drugs simultaneously. Many drugs inhibit this enzyme, which metabolises around half of all regularly used medicines. However, if a drug is degraded too slowly, at normal doses, it accumulates in the body and, in the worst case, can cause toxicity.

Further studies planned

Prof. Haefeli and his team are now testing the new method in patients. “Since we can use minimal drug doses, these studies are also safe for patients,” Prof. Haefeli explained. Heidelberg University pharmacologists will also examine the interactions of other medications that influence other metabolic enzymes. “The method could also be used in the many studies in which interactions are relevant for approval by the authorities, for instance,” said Prof. Haefeli, looking toward the future.

Literature:
Burhenne J, Halama B, Maurer M, Riedel K-D, Hohmann N, Mikus G, Haefeli WE: Quantification of femtomolar concentrations of the CYP3A substrate midazolam and its main metabolite 1’-hydroxymidazolam in human plasma using ultra-performance liquid chromatography coupled to tandem mass spectrometry. Anal Bioanal Chem 2012;402:2439-50.

Halama B, Hohmann N, Burhenne J, Weiss J, Mikus G, Haefeli WE: A nanogram dose of the CYP3A probe substrate midazolam to evaluate drug interactions. Clin Pharmacol Ther; accepted article preview online February 8, 2013; doi:10.1038/clpt.2013.
More information is available on the web:
Dept. of Clinical Pharmacology and Pharmacoepidemiology:
http://www.klinikum.uni-heidelberg.de/index.php?id=117526&L=1

Contact:
Prof. Walter E. Haefeli, MD
Head of Dept. of Clinical Pharmacology and Pharmacoepidemiology
phone: +49 6221 56 8740
email: walter.emil.haefeli@med.uni-heidelberg.de

Heidelberg University Hospital and Medical Faculty:
Internationally recognized patient care, research, and teaching
Heidelberg University Hospital is one of the largest and most prestigious medical centers in Germany. The Medical Faculty of Heidelberg University belongs to the internationally most renowned biomedical research institutions in Europe. Both institutions have the common goal of developing new therapies and implementing them rapidly for patients. With about 11,000 employees, training and qualification is an important issue. Every year, around 510,000 patients are treated on an inpatient or outpatient basis in more than 50 clinics and departments with 1,900 beds. Currently, about 3,500 future physicians are studying in Heidelberg; the reform Heidelberg Curriculum Medicinale (HeiCuMed) is one of the top medical training programs in Germany.

Requests by journalists:
Dr. Annette Tuffs
Director, Corporate Communication/Public Relations
University Hospital and
Medical Faculty of Heidelberg
Im Neuenheimer Feld 672
69120 Heidelberg
Germany
phone: +49 6221 / 56 45 36
fax: +49 6221 / 56 45 44
e-mail: annette.tuffs@med.uni-heidelberg.de

Selected english press releases online:
http://www.klinikum.uni-heidelberg.de/presse

Dr. Annette Tuffs | idw
Further information:
http://www.uni-heidelberg.de

More articles from Health and Medicine:

nachricht Scientists learn more about how gene linked to autism affects brain
19.06.2018 | Cincinnati Children's Hospital Medical Center

nachricht Overdosing on Calcium
19.06.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

19.06.2018 | Physics and Astronomy

How to track and trace a protein: Nanosensors monitor intracellular deliveries

19.06.2018 | Life Sciences

New material for splitting water

19.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>