Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New insights into the genetic architecture of Parkinson’s disease

16.07.2012
Scientists at the Hertie Institute for Clinical Brain Research and the University Hospital of Tübingen have – as leaders of a large, international joint study – demonstrated the significance of new genetic risk factors for Parkinson’s disease in different population groups.

The study is based on the genetic analysis of more than 17,000 patients and healthy control persons. As one of the largest genetic studies on Parkinson’s disease to date, for the first time the study establishes the significance of risk genes in pathogenesis, not only for the inhabitants of the western hemisphere but also for the population in the Asia-Pacific region (Neurology 11.07.2012).

Due to the rapid technical progress in genetic analyses large patient groups can be examined for risk genes for Parkinson’s disease with relatively little time expenditure. In the process, Parkinson’s patients are typically examined from specific regions, for example Western Europe or the USA, with the result that, to date, is was unclear whether and to what extent the risk factors found can be extrapolated to other population groups worldwide.

To tackle these problems, already in 2004, Tübingen physicians and researchers had founded a consortium, together with colleagues from the USA, for investigating the genetic-epidemiological causes of Parkinson’s disease (GEO-PD). The current study was funded by the Michael J Fox Foundation (MJFF) and arose as part of this consortium in collaboration with Parkinson’s specialists from 19 countries and four continents.

The DNA samples collected in this way from over 17,000 patients and control persons have now made it possible for the first time to examine the results of large genome-wide association studies in different patient populations worldwide and to define their significance for their respective population. In doing so the study reveals the particular significance of the population-specific context in interpreting and evaluating genetic risk factors.

On the basis of the study, risk genes can be named for Parkinson’s disease, which, via follow-up examinations on the affected carriers, allow predictions on the natural progression of the disease. This is a first step in the direction of future personalised risk modelling for carriers of the different gene variations.

Title of the publication: Large scale replication and heterogeneity in Parkinson desease genetic loci

Published in: Neurology „ahead of print“, 11.07.2012. Neurology

doi:
10.1212/WNL.0b013e318264e353
Authors:
Manu Sharma, John P.A. Ioannidis, Jan O. Aasly, Grazia Annesi, Alexis Brice, Christine Van Broeckhoven, Lars Bertram, Maria Bozi, David Crosiers, Carl Clarke, Maurizio Facheris, Matthew Farrer, Suzana Gispert, Georg Auburger, Carles Vilariño-Güell, Georgios M. Hadjigeorgiou , Andrew A. Hicks, Nobutaka Hattori, Beom Jeon, Suzanne Lesage, Christina M Lill, Juei-Jueng Lin, Timothy Lynch, Peter Lichtner , Anthony E Lang , Vincent Mok, Barbara Jasinska-Myga , George D. Mellick, Karen Morrison, Grzegorz Opala, Peter P. Pramstaller, Irene Pichler, Sung Sup Park, Aldo Quattrone, Ekaterina Rogaeva , Owen A. Ross, Leonidas Stefanis, Joanne D Stockton, Wataru Satake, Peter A. Silburn , Jessie Theuns, Eng King Tan, Tatsushi Toda, Hiroyuki Tomiyama, Ryan J. Uitti, Karin Wirdefeldt, Zbigniew Wszolek, Georgia Xiromerisiou, Kuo-Chu Yueh, Yi Zhao, Thomas Gasser, Demetrius Maraganore, Rejko Krüger on behalf of the GEOPD consortium. Worldwide replication and heterogeneity in Parkinson disease genetic loci (2012)

Contacts:

Dr. Manu Sharma
Hertie-Institut für klinische Hirnforschung (HIH),
Universitätsklinikum Tübingen,
Zentrum für Neurologie
Telefon: (+49) 7071 -2981968
E-Mail: manu.sharma@uni-tuebingen.de
Hertie-Institut für klinische Hirnforschung
Externe Pressestelle
Kirstin Ahrens
Telefon: 07073-500 724, Mobil: 0173-300 53 96
E-Mail: mail@kirstin-ahrens.de
Universitätsklinikum Tübingen
Presse- und Öffentlichkeitsarbeit
Dr. Ellen Katz
Telefon: 07071-29 80 112
E-Mail: Ellen.Katz@med.uni-tuebingen.de

Kirstin Ahrens | idw
Further information:
http://www.uni-tuebingen.de

More articles from Health and Medicine:

nachricht Tracking movement of immune cells identifies key first steps in inflammatory arthritis
23.01.2017 | Massachusetts General Hospital

nachricht Team discovers how bacteria exploit a chink in the body's armor
20.01.2017 | University of Illinois at Urbana-Champaign

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Arctic melt ponds form when meltwater clogs ice pores

24.01.2017 | Earth Sciences

Synthetic nanoparticles achieve the complexity of protein molecules

24.01.2017 | Life Sciences

PPPL physicist uncovers clues to mechanism behind magnetic reconnection

24.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>