Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New Insight Into Impulse Control

How the brain controls impulsive behavior may be significantly different than psychologists have thought for the last 40 years.

That is the unexpected conclusion of a study by an international team of neuroscientists published in the Aug. 31 issue of the Journal of Neuroscience.

Impulse control is an important aspect of the brain’s executive functions – the procedures that it uses to control its own activity. Problems with impulse control are involved in ADHD and a number of other psychiatric disorders including schizophrenia. The current research set out to better understand how the brain is wired to control impulsive behavior.

“Our study was focused on the control of eye movements, but we think it is widely applicable,” said Vanderbilt Ingram Professor of Neuroscience Jeffrey Schall, co-author of the new study.

Schall directed the study with Vanderbilt Centennial Professor of Psychology Gordon Logan and Associate Professor of Psychology Thomas Palmeri in collaboration with Pierre Pouget from the French National Institute of Health and Medical Research (INSERM), Leanne Boucher, assistant professor of psychology at Nova Southeastern University, and Martin Paré from Queen’s University in Ontario, Canada.

There are two sets of neurons that control how we process and react to what we see, hear, smell, taste or touch. The first set, sensory neurons, respond to different types of stimuli in the environment. They are connected to movement neurons that trigger an action when the information they receive from the sensory neurons reaches a certain threshold. Response time to stimuli varies considerably depending on a number of factors. When accuracy is important, for example, response times lengthen. When speed is important, response times shorten.

According to Logan, there is clear evidence of a link between reaction time variations and certain mental disorders. “In countermanding tests, the response times of people with ADHD don’t slow down as much following a stop-signal trial as normal subjects, while response times of schizophrenics tend to be much slower than normal,” he said.

Since the 1970’s, researchers have believed that the brain controls these response times by altering the threshold at which the movement neurons trigger an action: When rapid action is preferable, the threshold is lowered and when greater deliberation is called for, the threshold is increased.

In a direct test of this theory, however, Logan, Palmeri, Schall and their collaborators found that differences in when the movement neurons began accumulating information from the sensory neurons – rather than differences in the threshold – appear to explain the adjustment in response times.

This discovery forced them to make major modifications to the existing cognitive model of impulse control and is an example of the growing usefulness of such models to understand in much greater detail what is occurring in the brain to cause both normal and abnormal behaviors.

“Psychopathologists are beginning to use these models to make connections with various brain disorders that we haven’t been able to make before,” Palmeri said.

The researchers directly tested the threshold hypothesis by analyzing recordings of neuronal activity in macaque monkeys performing a visual eye movement stopping task. In this task, the monkey was trained to look directly at a target that was flashed in different locations on a computer screen, except when the target was quickly followed by a stop signal. When that happened, the monkey got a reward if it continued to look at the fixation spot in the center of the screen.

In the experiment, the delay between the appearance of the target and stop signals ranged from 25 milliseconds to 275 milliseconds. During this time, the movement neurons were still processing the signals generated by the appearance of the target. The longer the delay, the more difficult it was for the monkey to keep from glancing at the target. In both humans and monkeys, the reaction time in tasks such as these is significantly longer immediately following the stop signal.

The researchers believe their discovery is significant because it sheds new light on how the brain controls all sorts of basic impulses. It is possible that neurons from the medial frontal cortex, which performs executive control of decision-making, in the parietal lobe, which determines our spatial sense, or the temporal lobe, which plays a role in memory formation, may affect impulse control by altering the onset delay time of neurons involved in a number of other basic stimulus/response reactions.

The project was supported by awards and grants from the National Institutes of Health, the National Science Foundation, the Canadian Institute of Health Research, the Ontario Ministry of Research and Innovation and the ELJB Foundation.

Visit Research News @ Vanderbilt for more research news from Vanderbilt.

David F. Salisbury | Vanderbilt University
Further information:

More articles from Health and Medicine:

nachricht Scientists develop tiny tooth-mounted sensors that can track what you eat
22.03.2018 | Tufts University

nachricht NIH scientists describe potential antibody treatment for multidrug-resistant K. pneumoniae
14.03.2018 | NIH/National Institute of Allergy and Infectious Diseases

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>