Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Insight Into Impulse Control

02.09.2011
How the brain controls impulsive behavior may be significantly different than psychologists have thought for the last 40 years.

That is the unexpected conclusion of a study by an international team of neuroscientists published in the Aug. 31 issue of the Journal of Neuroscience.

Impulse control is an important aspect of the brain’s executive functions – the procedures that it uses to control its own activity. Problems with impulse control are involved in ADHD and a number of other psychiatric disorders including schizophrenia. The current research set out to better understand how the brain is wired to control impulsive behavior.

“Our study was focused on the control of eye movements, but we think it is widely applicable,” said Vanderbilt Ingram Professor of Neuroscience Jeffrey Schall, co-author of the new study.

Schall directed the study with Vanderbilt Centennial Professor of Psychology Gordon Logan and Associate Professor of Psychology Thomas Palmeri in collaboration with Pierre Pouget from the French National Institute of Health and Medical Research (INSERM), Leanne Boucher, assistant professor of psychology at Nova Southeastern University, and Martin Paré from Queen’s University in Ontario, Canada.

There are two sets of neurons that control how we process and react to what we see, hear, smell, taste or touch. The first set, sensory neurons, respond to different types of stimuli in the environment. They are connected to movement neurons that trigger an action when the information they receive from the sensory neurons reaches a certain threshold. Response time to stimuli varies considerably depending on a number of factors. When accuracy is important, for example, response times lengthen. When speed is important, response times shorten.

According to Logan, there is clear evidence of a link between reaction time variations and certain mental disorders. “In countermanding tests, the response times of people with ADHD don’t slow down as much following a stop-signal trial as normal subjects, while response times of schizophrenics tend to be much slower than normal,” he said.

Since the 1970’s, researchers have believed that the brain controls these response times by altering the threshold at which the movement neurons trigger an action: When rapid action is preferable, the threshold is lowered and when greater deliberation is called for, the threshold is increased.

In a direct test of this theory, however, Logan, Palmeri, Schall and their collaborators found that differences in when the movement neurons began accumulating information from the sensory neurons – rather than differences in the threshold – appear to explain the adjustment in response times.

This discovery forced them to make major modifications to the existing cognitive model of impulse control and is an example of the growing usefulness of such models to understand in much greater detail what is occurring in the brain to cause both normal and abnormal behaviors.

“Psychopathologists are beginning to use these models to make connections with various brain disorders that we haven’t been able to make before,” Palmeri said.

The researchers directly tested the threshold hypothesis by analyzing recordings of neuronal activity in macaque monkeys performing a visual eye movement stopping task. In this task, the monkey was trained to look directly at a target that was flashed in different locations on a computer screen, except when the target was quickly followed by a stop signal. When that happened, the monkey got a reward if it continued to look at the fixation spot in the center of the screen.

In the experiment, the delay between the appearance of the target and stop signals ranged from 25 milliseconds to 275 milliseconds. During this time, the movement neurons were still processing the signals generated by the appearance of the target. The longer the delay, the more difficult it was for the monkey to keep from glancing at the target. In both humans and monkeys, the reaction time in tasks such as these is significantly longer immediately following the stop signal.

The researchers believe their discovery is significant because it sheds new light on how the brain controls all sorts of basic impulses. It is possible that neurons from the medial frontal cortex, which performs executive control of decision-making, in the parietal lobe, which determines our spatial sense, or the temporal lobe, which plays a role in memory formation, may affect impulse control by altering the onset delay time of neurons involved in a number of other basic stimulus/response reactions.

The project was supported by awards and grants from the National Institutes of Health, the National Science Foundation, the Canadian Institute of Health Research, the Ontario Ministry of Research and Innovation and the ELJB Foundation.

Visit Research News @ Vanderbilt for more research news from Vanderbilt.

David F. Salisbury | Vanderbilt University
Further information:
http://www.vanderbilt.edu

More articles from Health and Medicine:

nachricht New malaria analysis method reveals disease severity in minutes
14.08.2017 | University of British Columbia

nachricht New type of blood cells work as indicators of autoimmunity
14.08.2017 | Instituto de Medicina Molecular

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>